Step |
Hyp |
Ref |
Expression |
1 |
|
elfvex |
⊢ ( 𝐴 ∈ ( fi ‘ 𝐶 ) → 𝐶 ∈ V ) |
2 |
|
elfi |
⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐶 ∈ V ) → ( 𝐴 ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ∩ 𝑥 ) ) |
3 |
1 2
|
mpdan |
⊢ ( 𝐴 ∈ ( fi ‘ 𝐶 ) → ( 𝐴 ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ∩ 𝑥 ) ) |
4 |
3
|
ibi |
⊢ ( 𝐴 ∈ ( fi ‘ 𝐶 ) → ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ∩ 𝑥 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ∩ 𝑥 ) |
6 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → 𝐵 ∈ ( fi ‘ 𝐶 ) ) |
7 |
|
elfi |
⊢ ( ( 𝐵 ∈ ( fi ‘ 𝐶 ) ∧ 𝐶 ∈ V ) → ( 𝐵 ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐵 = ∩ 𝑦 ) ) |
8 |
7
|
ancoms |
⊢ ( ( 𝐶 ∈ V ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ( 𝐵 ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐵 = ∩ 𝑦 ) ) |
9 |
1 8
|
sylan |
⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ( 𝐵 ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐵 = ∩ 𝑦 ) ) |
10 |
6 9
|
mpbid |
⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐵 = ∩ 𝑦 ) |
11 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( 𝑥 ∈ 𝒫 𝐶 ∧ 𝑥 ∈ Fin ) ) |
12 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( 𝑦 ∈ 𝒫 𝐶 ∧ 𝑦 ∈ Fin ) ) |
13 |
|
pwuncl |
⊢ ( ( 𝑥 ∈ 𝒫 𝐶 ∧ 𝑦 ∈ 𝒫 𝐶 ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐶 ) |
14 |
|
unfi |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝑦 ∈ Fin ) → ( 𝑥 ∪ 𝑦 ) ∈ Fin ) |
15 |
13 14
|
anim12i |
⊢ ( ( ( 𝑥 ∈ 𝒫 𝐶 ∧ 𝑦 ∈ 𝒫 𝐶 ) ∧ ( 𝑥 ∈ Fin ∧ 𝑦 ∈ Fin ) ) → ( ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐶 ∧ ( 𝑥 ∪ 𝑦 ) ∈ Fin ) ) |
16 |
15
|
an4s |
⊢ ( ( ( 𝑥 ∈ 𝒫 𝐶 ∧ 𝑥 ∈ Fin ) ∧ ( 𝑦 ∈ 𝒫 𝐶 ∧ 𝑦 ∈ Fin ) ) → ( ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐶 ∧ ( 𝑥 ∪ 𝑦 ) ∈ Fin ) ) |
17 |
11 12 16
|
syl2anb |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐶 ∧ ( 𝑥 ∪ 𝑦 ) ∈ Fin ) ) |
18 |
|
elin |
⊢ ( ( 𝑥 ∪ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( ( 𝑥 ∪ 𝑦 ) ∈ 𝒫 𝐶 ∧ ( 𝑥 ∪ 𝑦 ) ∈ Fin ) ) |
19 |
17 18
|
sylibr |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝑥 ∪ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
20 |
|
ineq12 |
⊢ ( ( 𝐴 = ∩ 𝑥 ∧ 𝐵 = ∩ 𝑦 ) → ( 𝐴 ∩ 𝐵 ) = ( ∩ 𝑥 ∩ ∩ 𝑦 ) ) |
21 |
|
intun |
⊢ ∩ ( 𝑥 ∪ 𝑦 ) = ( ∩ 𝑥 ∩ ∩ 𝑦 ) |
22 |
20 21
|
eqtr4di |
⊢ ( ( 𝐴 = ∩ 𝑥 ∧ 𝐵 = ∩ 𝑦 ) → ( 𝐴 ∩ 𝐵 ) = ∩ ( 𝑥 ∪ 𝑦 ) ) |
23 |
|
inteq |
⊢ ( 𝑧 = ( 𝑥 ∪ 𝑦 ) → ∩ 𝑧 = ∩ ( 𝑥 ∪ 𝑦 ) ) |
24 |
23
|
rspceeqv |
⊢ ( ( ( 𝑥 ∪ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∩ ( 𝑥 ∪ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) |
25 |
19 22 24
|
syl2an |
⊢ ( ( ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ ( 𝐴 = ∩ 𝑥 ∧ 𝐵 = ∩ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) |
26 |
25
|
an4s |
⊢ ( ( ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝐴 = ∩ 𝑥 ) ∧ ( 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝐵 = ∩ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) |
27 |
26
|
rexlimdvaa |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝐴 = ∩ 𝑥 ) → ( ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐵 = ∩ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) ) |
28 |
27
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ∩ 𝑥 → ( ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐵 = ∩ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) ) |
29 |
5 10 28
|
sylc |
⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) |
30 |
|
inex1g |
⊢ ( 𝐴 ∈ ( fi ‘ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
31 |
|
elfi |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ V ∧ 𝐶 ∈ V ) → ( ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) ) |
32 |
30 1 31
|
syl2anc |
⊢ ( 𝐴 ∈ ( fi ‘ 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ( ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝐶 ) ↔ ∃ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑧 ) ) |
34 |
29 33
|
mpbird |
⊢ ( ( 𝐴 ∈ ( fi ‘ 𝐶 ) ∧ 𝐵 ∈ ( fi ‘ 𝐶 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝐶 ) ) |