Metamath Proof Explorer


Theorem fiinbas

Description: If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion fiinbas ( ( 𝐵𝐶 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥𝑦 ) ∈ 𝐵 ) → 𝐵 ∈ TopBases )

Proof

Step Hyp Ref Expression
1 ssid ( 𝑥𝑦 ) ⊆ ( 𝑥𝑦 )
2 eleq2 ( 𝑤 = ( 𝑥𝑦 ) → ( 𝑧𝑤𝑧 ∈ ( 𝑥𝑦 ) ) )
3 sseq1 ( 𝑤 = ( 𝑥𝑦 ) → ( 𝑤 ⊆ ( 𝑥𝑦 ) ↔ ( 𝑥𝑦 ) ⊆ ( 𝑥𝑦 ) ) )
4 2 3 anbi12d ( 𝑤 = ( 𝑥𝑦 ) → ( ( 𝑧𝑤𝑤 ⊆ ( 𝑥𝑦 ) ) ↔ ( 𝑧 ∈ ( 𝑥𝑦 ) ∧ ( 𝑥𝑦 ) ⊆ ( 𝑥𝑦 ) ) ) )
5 4 rspcev ( ( ( 𝑥𝑦 ) ∈ 𝐵 ∧ ( 𝑧 ∈ ( 𝑥𝑦 ) ∧ ( 𝑥𝑦 ) ⊆ ( 𝑥𝑦 ) ) ) → ∃ 𝑤𝐵 ( 𝑧𝑤𝑤 ⊆ ( 𝑥𝑦 ) ) )
6 1 5 mpanr2 ( ( ( 𝑥𝑦 ) ∈ 𝐵𝑧 ∈ ( 𝑥𝑦 ) ) → ∃ 𝑤𝐵 ( 𝑧𝑤𝑤 ⊆ ( 𝑥𝑦 ) ) )
7 6 ralrimiva ( ( 𝑥𝑦 ) ∈ 𝐵 → ∀ 𝑧 ∈ ( 𝑥𝑦 ) ∃ 𝑤𝐵 ( 𝑧𝑤𝑤 ⊆ ( 𝑥𝑦 ) ) )
8 7 a1i ( 𝐵𝐶 → ( ( 𝑥𝑦 ) ∈ 𝐵 → ∀ 𝑧 ∈ ( 𝑥𝑦 ) ∃ 𝑤𝐵 ( 𝑧𝑤𝑤 ⊆ ( 𝑥𝑦 ) ) ) )
9 8 ralimdv ( 𝐵𝐶 → ( ∀ 𝑦𝐵 ( 𝑥𝑦 ) ∈ 𝐵 → ∀ 𝑦𝐵𝑧 ∈ ( 𝑥𝑦 ) ∃ 𝑤𝐵 ( 𝑧𝑤𝑤 ⊆ ( 𝑥𝑦 ) ) ) )
10 9 ralimdv ( 𝐵𝐶 → ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥𝑦 ) ∈ 𝐵 → ∀ 𝑥𝐵𝑦𝐵𝑧 ∈ ( 𝑥𝑦 ) ∃ 𝑤𝐵 ( 𝑧𝑤𝑤 ⊆ ( 𝑥𝑦 ) ) ) )
11 isbasis2g ( 𝐵𝐶 → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥𝐵𝑦𝐵𝑧 ∈ ( 𝑥𝑦 ) ∃ 𝑤𝐵 ( 𝑧𝑤𝑤 ⊆ ( 𝑥𝑦 ) ) ) )
12 10 11 sylibrd ( 𝐵𝐶 → ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥𝑦 ) ∈ 𝐵𝐵 ∈ TopBases ) )
13 12 imp ( ( 𝐵𝐶 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥𝑦 ) ∈ 𝐵 ) → 𝐵 ∈ TopBases )