Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
⊢ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) |
2 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑥 ∩ 𝑦 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ) |
3 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑥 ∩ 𝑦 ) → ( 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
4 |
2 3
|
anbi12d |
⊢ ( 𝑤 = ( 𝑥 ∩ 𝑦 ) → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
5 |
4
|
rspcev |
⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 ∧ ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
6 |
1 5
|
mpanr2 |
⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
7 |
6
|
ralrimiva |
⊢ ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 → ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
8 |
7
|
a1i |
⊢ ( 𝐵 ∈ 𝐶 → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 → ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
9 |
8
|
ralimdv |
⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
10 |
9
|
ralimdv |
⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
11 |
|
isbasis2g |
⊢ ( 𝐵 ∈ 𝐶 → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
12 |
10 11
|
sylibrd |
⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 → 𝐵 ∈ TopBases ) ) |
13 |
12
|
imp |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ∈ 𝐵 ) → 𝐵 ∈ TopBases ) |