| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fiming | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 ) ) | 
						
							| 2 |  | equcom | ⊢ ( 𝑥  =  𝑦  ↔  𝑦  =  𝑥 ) | 
						
							| 3 |  | sotrieq2 | ⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  →  ( 𝑦  =  𝑥  ↔  ( ¬  𝑦 𝑅 𝑥  ∧  ¬  𝑥 𝑅 𝑦 ) ) ) | 
						
							| 4 | 3 | ancom2s | ⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑦  =  𝑥  ↔  ( ¬  𝑦 𝑅 𝑥  ∧  ¬  𝑥 𝑅 𝑦 ) ) ) | 
						
							| 5 | 2 4 | bitrid | ⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑥  =  𝑦  ↔  ( ¬  𝑦 𝑅 𝑥  ∧  ¬  𝑥 𝑅 𝑦 ) ) ) | 
						
							| 6 | 5 | simprbda | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  𝑥  =  𝑦 )  →  ¬  𝑦 𝑅 𝑥 ) | 
						
							| 7 | 6 | ex | ⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑥  =  𝑦  →  ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 8 | 7 | anassrs | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  =  𝑦  →  ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 9 | 8 | a1dd | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  =  𝑦  →  ( ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  →  ¬  𝑦 𝑅 𝑥 ) ) ) | 
						
							| 10 |  | pm2.27 | ⊢ ( 𝑥  ≠  𝑦  →  ( ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  →  𝑥 𝑅 𝑦 ) ) | 
						
							| 11 |  | soasym | ⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑥 𝑅 𝑦  →  ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 12 | 11 | anassrs | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥 𝑅 𝑦  →  ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 13 | 10 12 | syl9r | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  ≠  𝑦  →  ( ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  →  ¬  𝑦 𝑅 𝑥 ) ) ) | 
						
							| 14 | 9 13 | pm2.61dne | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  →  ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 15 | 14 | ralimdva | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  →  ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 16 |  | breq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧 𝑅 𝑦  ↔  𝑥 𝑅 𝑦 ) ) | 
						
							| 17 | 16 | rspcev | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥 𝑅 𝑦 )  →  ∃ 𝑧  ∈  𝐴 𝑧 𝑅 𝑦 ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧 𝑅 𝑦 ) ) | 
						
							| 19 | 18 | ralrimivw | ⊢ ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧 𝑅 𝑦 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑥  ∈  𝐴 )  →  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧 𝑅 𝑦 ) ) | 
						
							| 21 | 15 20 | jctird | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧 𝑅 𝑦 ) ) ) ) | 
						
							| 22 | 21 | reximdva | ⊢ ( 𝑅  Or  𝐴  →  ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧 𝑅 𝑦 ) ) ) ) | 
						
							| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧 𝑅 𝑦 ) ) ) ) | 
						
							| 24 | 1 23 | mpd | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧 𝑅 𝑦 ) ) ) |