Metamath Proof Explorer


Theorem fiinfg

Description: Lemma showing existence and closure of infimum of a finite set. (Contributed by AV, 6-Oct-2020)

Ref Expression
Assertion fiinfg ( ( 𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐴 𝑧 𝑅 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 fiming ( ( 𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦𝑥 𝑅 𝑦 ) )
2 equcom ( 𝑥 = 𝑦𝑦 = 𝑥 )
3 sotrieq2 ( ( 𝑅 Or 𝐴 ∧ ( 𝑦𝐴𝑥𝐴 ) ) → ( 𝑦 = 𝑥 ↔ ( ¬ 𝑦 𝑅 𝑥 ∧ ¬ 𝑥 𝑅 𝑦 ) ) )
4 3 ancom2s ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( 𝑦 = 𝑥 ↔ ( ¬ 𝑦 𝑅 𝑥 ∧ ¬ 𝑥 𝑅 𝑦 ) ) )
5 2 4 syl5bb ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( 𝑥 = 𝑦 ↔ ( ¬ 𝑦 𝑅 𝑥 ∧ ¬ 𝑥 𝑅 𝑦 ) ) )
6 5 simprbda ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑥 = 𝑦 ) → ¬ 𝑦 𝑅 𝑥 )
7 6 ex ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( 𝑥 = 𝑦 → ¬ 𝑦 𝑅 𝑥 ) )
8 7 anassrs ( ( ( 𝑅 Or 𝐴𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑥 = 𝑦 → ¬ 𝑦 𝑅 𝑥 ) )
9 8 a1dd ( ( ( 𝑅 Or 𝐴𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑥 = 𝑦 → ( ( 𝑥𝑦𝑥 𝑅 𝑦 ) → ¬ 𝑦 𝑅 𝑥 ) ) )
10 pm2.27 ( 𝑥𝑦 → ( ( 𝑥𝑦𝑥 𝑅 𝑦 ) → 𝑥 𝑅 𝑦 ) )
11 soasym ( ( 𝑅 Or 𝐴 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( 𝑥 𝑅 𝑦 → ¬ 𝑦 𝑅 𝑥 ) )
12 11 anassrs ( ( ( 𝑅 Or 𝐴𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑥 𝑅 𝑦 → ¬ 𝑦 𝑅 𝑥 ) )
13 10 12 syl9r ( ( ( 𝑅 Or 𝐴𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑥𝑦 → ( ( 𝑥𝑦𝑥 𝑅 𝑦 ) → ¬ 𝑦 𝑅 𝑥 ) ) )
14 9 13 pm2.61dne ( ( ( 𝑅 Or 𝐴𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( ( 𝑥𝑦𝑥 𝑅 𝑦 ) → ¬ 𝑦 𝑅 𝑥 ) )
15 14 ralimdva ( ( 𝑅 Or 𝐴𝑥𝐴 ) → ( ∀ 𝑦𝐴 ( 𝑥𝑦𝑥 𝑅 𝑦 ) → ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) )
16 breq1 ( 𝑧 = 𝑥 → ( 𝑧 𝑅 𝑦𝑥 𝑅 𝑦 ) )
17 16 rspcev ( ( 𝑥𝐴𝑥 𝑅 𝑦 ) → ∃ 𝑧𝐴 𝑧 𝑅 𝑦 )
18 17 ex ( 𝑥𝐴 → ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐴 𝑧 𝑅 𝑦 ) )
19 18 ralrimivw ( 𝑥𝐴 → ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐴 𝑧 𝑅 𝑦 ) )
20 19 adantl ( ( 𝑅 Or 𝐴𝑥𝐴 ) → ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐴 𝑧 𝑅 𝑦 ) )
21 15 20 jctird ( ( 𝑅 Or 𝐴𝑥𝐴 ) → ( ∀ 𝑦𝐴 ( 𝑥𝑦𝑥 𝑅 𝑦 ) → ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐴 𝑧 𝑅 𝑦 ) ) ) )
22 21 reximdva ( 𝑅 Or 𝐴 → ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦𝑥 𝑅 𝑦 ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐴 𝑧 𝑅 𝑦 ) ) ) )
23 22 3ad2ant1 ( ( 𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦𝑥 𝑅 𝑦 ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐴 𝑧 𝑅 𝑦 ) ) ) )
24 1 23 mpd ( ( 𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐴 𝑧 𝑅 𝑦 ) ) )