Metamath Proof Explorer


Theorem fiinopn

Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012)

Ref Expression
Assertion fiinopn ( 𝐽 ∈ Top → ( ( 𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴𝐽 ) )

Proof

Step Hyp Ref Expression
1 elpwg ( 𝐴 ∈ Fin → ( 𝐴 ∈ 𝒫 𝐽𝐴𝐽 ) )
2 sseq1 ( 𝑥 = 𝐴 → ( 𝑥𝐽𝐴𝐽 ) )
3 neeq1 ( 𝑥 = 𝐴 → ( 𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅ ) )
4 eleq1 ( 𝑥 = 𝐴 → ( 𝑥 ∈ Fin ↔ 𝐴 ∈ Fin ) )
5 2 3 4 3anbi123d ( 𝑥 = 𝐴 → ( ( 𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) ↔ ( 𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) )
6 inteq ( 𝑥 = 𝐴 𝑥 = 𝐴 )
7 6 eleq1d ( 𝑥 = 𝐴 → ( 𝑥𝐽 𝐴𝐽 ) )
8 7 imbi2d ( 𝑥 = 𝐴 → ( ( 𝐽 ∈ Top → 𝑥𝐽 ) ↔ ( 𝐽 ∈ Top → 𝐴𝐽 ) ) )
9 5 8 imbi12d ( 𝑥 = 𝐴 → ( ( ( 𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ( 𝐽 ∈ Top → 𝑥𝐽 ) ) ↔ ( ( 𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( 𝐽 ∈ Top → 𝐴𝐽 ) ) ) )
10 sp ( ∀ 𝑥 ( ( 𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → 𝑥𝐽 ) → ( ( 𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → 𝑥𝐽 ) )
11 10 adantl ( ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) ∧ ∀ 𝑥 ( ( 𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → 𝑥𝐽 ) ) → ( ( 𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → 𝑥𝐽 ) )
12 istop2g ( 𝐽 ∈ Top → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) ∧ ∀ 𝑥 ( ( 𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → 𝑥𝐽 ) ) ) )
13 12 ibi ( 𝐽 ∈ Top → ( ∀ 𝑥 ( 𝑥𝐽 𝑥𝐽 ) ∧ ∀ 𝑥 ( ( 𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → 𝑥𝐽 ) ) )
14 11 13 syl11 ( ( 𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ( 𝐽 ∈ Top → 𝑥𝐽 ) )
15 9 14 vtoclg ( 𝐴 ∈ 𝒫 𝐽 → ( ( 𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( 𝐽 ∈ Top → 𝐴𝐽 ) ) )
16 15 com12 ( ( 𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( 𝐴 ∈ 𝒫 𝐽 → ( 𝐽 ∈ Top → 𝐴𝐽 ) ) )
17 16 3exp ( 𝐴𝐽 → ( 𝐴 ≠ ∅ → ( 𝐴 ∈ Fin → ( 𝐴 ∈ 𝒫 𝐽 → ( 𝐽 ∈ Top → 𝐴𝐽 ) ) ) ) )
18 17 com3r ( 𝐴 ∈ Fin → ( 𝐴𝐽 → ( 𝐴 ≠ ∅ → ( 𝐴 ∈ 𝒫 𝐽 → ( 𝐽 ∈ Top → 𝐴𝐽 ) ) ) ) )
19 18 com4r ( 𝐴 ∈ 𝒫 𝐽 → ( 𝐴 ∈ Fin → ( 𝐴𝐽 → ( 𝐴 ≠ ∅ → ( 𝐽 ∈ Top → 𝐴𝐽 ) ) ) ) )
20 1 19 syl6bir ( 𝐴 ∈ Fin → ( 𝐴𝐽 → ( 𝐴 ∈ Fin → ( 𝐴𝐽 → ( 𝐴 ≠ ∅ → ( 𝐽 ∈ Top → 𝐴𝐽 ) ) ) ) ) )
21 20 pm2.43a ( 𝐴 ∈ Fin → ( 𝐴𝐽 → ( 𝐴𝐽 → ( 𝐴 ≠ ∅ → ( 𝐽 ∈ Top → 𝐴𝐽 ) ) ) ) )
22 21 com4l ( 𝐴𝐽 → ( 𝐴𝐽 → ( 𝐴 ≠ ∅ → ( 𝐴 ∈ Fin → ( 𝐽 ∈ Top → 𝐴𝐽 ) ) ) ) )
23 22 pm2.43i ( 𝐴𝐽 → ( 𝐴 ≠ ∅ → ( 𝐴 ∈ Fin → ( 𝐽 ∈ Top → 𝐴𝐽 ) ) ) )
24 23 3imp ( ( 𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( 𝐽 ∈ Top → 𝐴𝐽 ) )
25 24 com12 ( 𝐽 ∈ Top → ( ( 𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴𝐽 ) )