| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfi | ⊢ ( 𝑧  ∈  Fin  ↔  ∃ 𝑤  ∈  ω 𝑧  ≈  𝑤 ) | 
						
							| 2 |  | nnfi | ⊢ ( 𝑤  ∈  ω  →  𝑤  ∈  Fin ) | 
						
							| 3 |  | ensymfib | ⊢ ( 𝑤  ∈  Fin  →  ( 𝑤  ≈  𝑧  ↔  𝑧  ≈  𝑤 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝑤  ∈  ω  →  ( 𝑤  ≈  𝑧  ↔  𝑧  ≈  𝑤 ) ) | 
						
							| 5 |  | breq1 | ⊢ ( 𝑤  =  ∅  →  ( 𝑤  ≈  𝑧  ↔  ∅  ≈  𝑧 ) ) | 
						
							| 6 | 5 | anbi2d | ⊢ ( 𝑤  =  ∅  →  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑤  ≈  𝑧 )  ↔  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  ∅  ≈  𝑧 ) ) ) | 
						
							| 7 | 6 | imbi1d | ⊢ ( 𝑤  =  ∅  →  ( ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑤  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ↔  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  ∅  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 8 | 7 | albidv | ⊢ ( 𝑤  =  ∅  →  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑤  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ↔  ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  ∅  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 9 |  | breq1 | ⊢ ( 𝑤  =  𝑡  →  ( 𝑤  ≈  𝑧  ↔  𝑡  ≈  𝑧 ) ) | 
						
							| 10 | 9 | anbi2d | ⊢ ( 𝑤  =  𝑡  →  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑤  ≈  𝑧 )  ↔  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 ) ) ) | 
						
							| 11 | 10 | imbi1d | ⊢ ( 𝑤  =  𝑡  →  ( ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑤  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ↔  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 12 | 11 | albidv | ⊢ ( 𝑤  =  𝑡  →  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑤  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ↔  ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 13 |  | breq1 | ⊢ ( 𝑤  =  suc  𝑡  →  ( 𝑤  ≈  𝑧  ↔  suc  𝑡  ≈  𝑧 ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝑤  =  suc  𝑡  →  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑤  ≈  𝑧 )  ↔  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  suc  𝑡  ≈  𝑧 ) ) ) | 
						
							| 15 | 14 | imbi1d | ⊢ ( 𝑤  =  suc  𝑡  →  ( ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑤  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ↔  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  suc  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 16 | 15 | albidv | ⊢ ( 𝑤  =  suc  𝑡  →  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑤  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ↔  ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  suc  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 17 |  | en0r | ⊢ ( ∅  ≈  𝑧  ↔  𝑧  =  ∅ ) | 
						
							| 18 | 17 | biimpi | ⊢ ( ∅  ≈  𝑧  →  𝑧  =  ∅ ) | 
						
							| 19 | 18 | anim1i | ⊢ ( ( ∅  ≈  𝑧  ∧  𝑧  ≠  ∅ )  →  ( 𝑧  =  ∅  ∧  𝑧  ≠  ∅ ) ) | 
						
							| 20 | 19 | ancoms | ⊢ ( ( 𝑧  ≠  ∅  ∧  ∅  ≈  𝑧 )  →  ( 𝑧  =  ∅  ∧  𝑧  ≠  ∅ ) ) | 
						
							| 21 | 20 | adantll | ⊢ ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  ∅  ≈  𝑧 )  →  ( 𝑧  =  ∅  ∧  𝑧  ≠  ∅ ) ) | 
						
							| 22 |  | df-ne | ⊢ ( 𝑧  ≠  ∅  ↔  ¬  𝑧  =  ∅ ) | 
						
							| 23 |  | pm3.24 | ⊢ ¬  ( 𝑧  =  ∅  ∧  ¬  𝑧  =  ∅ ) | 
						
							| 24 | 23 | pm2.21i | ⊢ ( ( 𝑧  =  ∅  ∧  ¬  𝑧  =  ∅ )  →  ∩  𝑧  ∈  𝐴 ) | 
						
							| 25 | 22 24 | sylan2b | ⊢ ( ( 𝑧  =  ∅  ∧  𝑧  ≠  ∅ )  →  ∩  𝑧  ∈  𝐴 ) | 
						
							| 26 | 21 25 | syl | ⊢ ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  ∅  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) | 
						
							| 27 | 26 | ax-gen | ⊢ ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  ∅  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) | 
						
							| 28 | 27 | a1i | ⊢ ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  ∅  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) ) | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑧 ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴 | 
						
							| 30 |  | nfa1 | ⊢ Ⅎ 𝑧 ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) | 
						
							| 31 |  | bren | ⊢ ( suc  𝑡  ≈  𝑧  ↔  ∃ 𝑓 𝑓 : suc  𝑡 –1-1-onto→ 𝑧 ) | 
						
							| 32 |  | ssel | ⊢ ( 𝑧  ⊆  𝐴  →  ( ( 𝑓 ‘ 𝑡 )  ∈  𝑧  →  ( 𝑓 ‘ 𝑡 )  ∈  𝐴 ) ) | 
						
							| 33 |  | f1of | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  𝑓 : suc  𝑡 ⟶ 𝑧 ) | 
						
							| 34 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 35 | 34 | sucid | ⊢ 𝑡  ∈  suc  𝑡 | 
						
							| 36 |  | ffvelcdm | ⊢ ( ( 𝑓 : suc  𝑡 ⟶ 𝑧  ∧  𝑡  ∈  suc  𝑡 )  →  ( 𝑓 ‘ 𝑡 )  ∈  𝑧 ) | 
						
							| 37 | 33 35 36 | sylancl | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( 𝑓 ‘ 𝑡 )  ∈  𝑧 ) | 
						
							| 38 | 32 37 | impel | ⊢ ( ( 𝑧  ⊆  𝐴  ∧  𝑓 : suc  𝑡 –1-1-onto→ 𝑧 )  →  ( 𝑓 ‘ 𝑡 )  ∈  𝐴 ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( 𝑧  ⊆  𝐴  ∧  𝑓 : suc  𝑡 –1-1-onto→ 𝑧 )  ∧  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ∧  ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴 ) )  →  ( 𝑓 ‘ 𝑡 )  ∈  𝐴 ) | 
						
							| 40 |  | df-ne | ⊢ ( ( 𝑓  “  𝑡 )  ≠  ∅  ↔  ¬  ( 𝑓  “  𝑡 )  =  ∅ ) | 
						
							| 41 |  | imassrn | ⊢ ( 𝑓  “  𝑡 )  ⊆  ran  𝑓 | 
						
							| 42 |  | dff1o2 | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  ↔  ( 𝑓  Fn  suc  𝑡  ∧  Fun  ◡ 𝑓  ∧  ran  𝑓  =  𝑧 ) ) | 
						
							| 43 | 42 | simp3bi | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ran  𝑓  =  𝑧 ) | 
						
							| 44 | 41 43 | sseqtrid | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( 𝑓  “  𝑡 )  ⊆  𝑧 ) | 
						
							| 45 |  | sstr2 | ⊢ ( ( 𝑓  “  𝑡 )  ⊆  𝑧  →  ( 𝑧  ⊆  𝐴  →  ( 𝑓  “  𝑡 )  ⊆  𝐴 ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( 𝑧  ⊆  𝐴  →  ( 𝑓  “  𝑡 )  ⊆  𝐴 ) ) | 
						
							| 47 | 46 | anim1d | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( ( 𝑧  ⊆  𝐴  ∧  ( 𝑓  “  𝑡 )  ≠  ∅ )  →  ( ( 𝑓  “  𝑡 )  ⊆  𝐴  ∧  ( 𝑓  “  𝑡 )  ≠  ∅ ) ) ) | 
						
							| 48 |  | f1of1 | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  𝑓 : suc  𝑡 –1-1→ 𝑧 ) | 
						
							| 49 |  | sssucid | ⊢ 𝑡  ⊆  suc  𝑡 | 
						
							| 50 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 51 |  | f1imaen3g | ⊢ ( ( 𝑓 : suc  𝑡 –1-1→ 𝑧  ∧  𝑡  ⊆  suc  𝑡  ∧  𝑓  ∈  V )  →  𝑡  ≈  ( 𝑓  “  𝑡 ) ) | 
						
							| 52 | 49 50 51 | mp3an23 | ⊢ ( 𝑓 : suc  𝑡 –1-1→ 𝑧  →  𝑡  ≈  ( 𝑓  “  𝑡 ) ) | 
						
							| 53 | 48 52 | syl | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  𝑡  ≈  ( 𝑓  “  𝑡 ) ) | 
						
							| 54 | 47 53 | jctird | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( ( 𝑧  ⊆  𝐴  ∧  ( 𝑓  “  𝑡 )  ≠  ∅ )  →  ( ( ( 𝑓  “  𝑡 )  ⊆  𝐴  ∧  ( 𝑓  “  𝑡 )  ≠  ∅ )  ∧  𝑡  ≈  ( 𝑓  “  𝑡 ) ) ) ) | 
						
							| 55 | 50 | imaex | ⊢ ( 𝑓  “  𝑡 )  ∈  V | 
						
							| 56 |  | sseq1 | ⊢ ( 𝑧  =  ( 𝑓  “  𝑡 )  →  ( 𝑧  ⊆  𝐴  ↔  ( 𝑓  “  𝑡 )  ⊆  𝐴 ) ) | 
						
							| 57 |  | neeq1 | ⊢ ( 𝑧  =  ( 𝑓  “  𝑡 )  →  ( 𝑧  ≠  ∅  ↔  ( 𝑓  “  𝑡 )  ≠  ∅ ) ) | 
						
							| 58 | 56 57 | anbi12d | ⊢ ( 𝑧  =  ( 𝑓  “  𝑡 )  →  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ↔  ( ( 𝑓  “  𝑡 )  ⊆  𝐴  ∧  ( 𝑓  “  𝑡 )  ≠  ∅ ) ) ) | 
						
							| 59 |  | breq2 | ⊢ ( 𝑧  =  ( 𝑓  “  𝑡 )  →  ( 𝑡  ≈  𝑧  ↔  𝑡  ≈  ( 𝑓  “  𝑡 ) ) ) | 
						
							| 60 | 58 59 | anbi12d | ⊢ ( 𝑧  =  ( 𝑓  “  𝑡 )  →  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  ↔  ( ( ( 𝑓  “  𝑡 )  ⊆  𝐴  ∧  ( 𝑓  “  𝑡 )  ≠  ∅ )  ∧  𝑡  ≈  ( 𝑓  “  𝑡 ) ) ) ) | 
						
							| 61 |  | inteq | ⊢ ( 𝑧  =  ( 𝑓  “  𝑡 )  →  ∩  𝑧  =  ∩  ( 𝑓  “  𝑡 ) ) | 
						
							| 62 | 61 | eleq1d | ⊢ ( 𝑧  =  ( 𝑓  “  𝑡 )  →  ( ∩  𝑧  ∈  𝐴  ↔  ∩  ( 𝑓  “  𝑡 )  ∈  𝐴 ) ) | 
						
							| 63 | 60 62 | imbi12d | ⊢ ( 𝑧  =  ( 𝑓  “  𝑡 )  →  ( ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ↔  ( ( ( ( 𝑓  “  𝑡 )  ⊆  𝐴  ∧  ( 𝑓  “  𝑡 )  ≠  ∅ )  ∧  𝑡  ≈  ( 𝑓  “  𝑡 ) )  →  ∩  ( 𝑓  “  𝑡 )  ∈  𝐴 ) ) ) | 
						
							| 64 | 55 63 | spcv | ⊢ ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  →  ( ( ( ( 𝑓  “  𝑡 )  ⊆  𝐴  ∧  ( 𝑓  “  𝑡 )  ≠  ∅ )  ∧  𝑡  ≈  ( 𝑓  “  𝑡 ) )  →  ∩  ( 𝑓  “  𝑡 )  ∈  𝐴 ) ) | 
						
							| 65 | 54 64 | sylan9 | ⊢ ( ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  ∧  ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) )  →  ( ( 𝑧  ⊆  𝐴  ∧  ( 𝑓  “  𝑡 )  ≠  ∅ )  →  ∩  ( 𝑓  “  𝑡 )  ∈  𝐴 ) ) | 
						
							| 66 |  | ineq1 | ⊢ ( 𝑣  =  ∩  ( 𝑓  “  𝑡 )  →  ( 𝑣  ∩  𝑢 )  =  ( ∩  ( 𝑓  “  𝑡 )  ∩  𝑢 ) ) | 
						
							| 67 | 66 | eleq1d | ⊢ ( 𝑣  =  ∩  ( 𝑓  “  𝑡 )  →  ( ( 𝑣  ∩  𝑢 )  ∈  𝐴  ↔  ( ∩  ( 𝑓  “  𝑡 )  ∩  𝑢 )  ∈  𝐴 ) ) | 
						
							| 68 |  | ineq2 | ⊢ ( 𝑢  =  ( 𝑓 ‘ 𝑡 )  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  𝑢 )  =  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) ) ) | 
						
							| 69 | 68 | eleq1d | ⊢ ( 𝑢  =  ( 𝑓 ‘ 𝑡 )  →  ( ( ∩  ( 𝑓  “  𝑡 )  ∩  𝑢 )  ∈  𝐴  ↔  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴 ) ) | 
						
							| 70 | 67 69 | rspc2v | ⊢ ( ( ∩  ( 𝑓  “  𝑡 )  ∈  𝐴  ∧  ( 𝑓 ‘ 𝑡 )  ∈  𝐴 )  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴 ) ) | 
						
							| 71 | 70 | ex | ⊢ ( ∩  ( 𝑓  “  𝑡 )  ∈  𝐴  →  ( ( 𝑓 ‘ 𝑡 )  ∈  𝐴  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴 ) ) ) | 
						
							| 72 | 65 71 | syl6 | ⊢ ( ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  ∧  ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) )  →  ( ( 𝑧  ⊆  𝐴  ∧  ( 𝑓  “  𝑡 )  ≠  ∅ )  →  ( ( 𝑓 ‘ 𝑡 )  ∈  𝐴  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴 ) ) ) ) | 
						
							| 73 | 72 | com4r | ⊢ ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ( ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  ∧  ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) )  →  ( ( 𝑧  ⊆  𝐴  ∧  ( 𝑓  “  𝑡 )  ≠  ∅ )  →  ( ( 𝑓 ‘ 𝑡 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴 ) ) ) ) | 
						
							| 74 | 73 | exp5c | ⊢ ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  →  ( 𝑧  ⊆  𝐴  →  ( ( 𝑓  “  𝑡 )  ≠  ∅  →  ( ( 𝑓 ‘ 𝑡 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴 ) ) ) ) ) ) | 
						
							| 75 | 74 | com14 | ⊢ ( 𝑧  ⊆  𝐴  →  ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ( ( 𝑓  “  𝑡 )  ≠  ∅  →  ( ( 𝑓 ‘ 𝑡 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴 ) ) ) ) ) ) | 
						
							| 76 | 75 | imp43 | ⊢ ( ( ( 𝑧  ⊆  𝐴  ∧  𝑓 : suc  𝑡 –1-1-onto→ 𝑧 )  ∧  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ∧  ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴 ) )  →  ( ( 𝑓  “  𝑡 )  ≠  ∅  →  ( ( 𝑓 ‘ 𝑡 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴 ) ) ) | 
						
							| 77 | 40 76 | biimtrrid | ⊢ ( ( ( 𝑧  ⊆  𝐴  ∧  𝑓 : suc  𝑡 –1-1-onto→ 𝑧 )  ∧  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ∧  ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴 ) )  →  ( ¬  ( 𝑓  “  𝑡 )  =  ∅  →  ( ( 𝑓 ‘ 𝑡 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴 ) ) ) | 
						
							| 78 |  | inteq | ⊢ ( ( 𝑓  “  𝑡 )  =  ∅  →  ∩  ( 𝑓  “  𝑡 )  =  ∩  ∅ ) | 
						
							| 79 |  | int0 | ⊢ ∩  ∅  =  V | 
						
							| 80 | 78 79 | eqtrdi | ⊢ ( ( 𝑓  “  𝑡 )  =  ∅  →  ∩  ( 𝑓  “  𝑡 )  =  V ) | 
						
							| 81 | 80 | ineq1d | ⊢ ( ( 𝑓  “  𝑡 )  =  ∅  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  =  ( V  ∩  ( 𝑓 ‘ 𝑡 ) ) ) | 
						
							| 82 |  | ssv | ⊢ ( 𝑓 ‘ 𝑡 )  ⊆  V | 
						
							| 83 |  | sseqin2 | ⊢ ( ( 𝑓 ‘ 𝑡 )  ⊆  V  ↔  ( V  ∩  ( 𝑓 ‘ 𝑡 ) )  =  ( 𝑓 ‘ 𝑡 ) ) | 
						
							| 84 | 82 83 | mpbi | ⊢ ( V  ∩  ( 𝑓 ‘ 𝑡 ) )  =  ( 𝑓 ‘ 𝑡 ) | 
						
							| 85 | 81 84 | eqtrdi | ⊢ ( ( 𝑓  “  𝑡 )  =  ∅  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  =  ( 𝑓 ‘ 𝑡 ) ) | 
						
							| 86 | 85 | eleq1d | ⊢ ( ( 𝑓  “  𝑡 )  =  ∅  →  ( ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴  ↔  ( 𝑓 ‘ 𝑡 )  ∈  𝐴 ) ) | 
						
							| 87 | 86 | biimprd | ⊢ ( ( 𝑓  “  𝑡 )  =  ∅  →  ( ( 𝑓 ‘ 𝑡 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴 ) ) | 
						
							| 88 | 77 87 | pm2.61d2 | ⊢ ( ( ( 𝑧  ⊆  𝐴  ∧  𝑓 : suc  𝑡 –1-1-onto→ 𝑧 )  ∧  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ∧  ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴 ) )  →  ( ( 𝑓 ‘ 𝑡 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴 ) ) | 
						
							| 89 | 39 88 | mpd | ⊢ ( ( ( 𝑧  ⊆  𝐴  ∧  𝑓 : suc  𝑡 –1-1-onto→ 𝑧 )  ∧  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ∧  ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴 ) )  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴 ) | 
						
							| 90 |  | fvex | ⊢ ( 𝑓 ‘ 𝑡 )  ∈  V | 
						
							| 91 | 90 | intunsn | ⊢ ∩  ( ( 𝑓  “  𝑡 )  ∪  { ( 𝑓 ‘ 𝑡 ) } )  =  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) ) | 
						
							| 92 |  | f1ofn | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  𝑓  Fn  suc  𝑡 ) | 
						
							| 93 |  | fnsnfv | ⊢ ( ( 𝑓  Fn  suc  𝑡  ∧  𝑡  ∈  suc  𝑡 )  →  { ( 𝑓 ‘ 𝑡 ) }  =  ( 𝑓  “  { 𝑡 } ) ) | 
						
							| 94 | 92 35 93 | sylancl | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  { ( 𝑓 ‘ 𝑡 ) }  =  ( 𝑓  “  { 𝑡 } ) ) | 
						
							| 95 | 94 | uneq2d | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( ( 𝑓  “  𝑡 )  ∪  { ( 𝑓 ‘ 𝑡 ) } )  =  ( ( 𝑓  “  𝑡 )  ∪  ( 𝑓  “  { 𝑡 } ) ) ) | 
						
							| 96 |  | df-suc | ⊢ suc  𝑡  =  ( 𝑡  ∪  { 𝑡 } ) | 
						
							| 97 | 96 | imaeq2i | ⊢ ( 𝑓  “  suc  𝑡 )  =  ( 𝑓  “  ( 𝑡  ∪  { 𝑡 } ) ) | 
						
							| 98 |  | imaundi | ⊢ ( 𝑓  “  ( 𝑡  ∪  { 𝑡 } ) )  =  ( ( 𝑓  “  𝑡 )  ∪  ( 𝑓  “  { 𝑡 } ) ) | 
						
							| 99 | 97 98 | eqtr2i | ⊢ ( ( 𝑓  “  𝑡 )  ∪  ( 𝑓  “  { 𝑡 } ) )  =  ( 𝑓  “  suc  𝑡 ) | 
						
							| 100 | 95 99 | eqtrdi | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( ( 𝑓  “  𝑡 )  ∪  { ( 𝑓 ‘ 𝑡 ) } )  =  ( 𝑓  “  suc  𝑡 ) ) | 
						
							| 101 |  | f1ofo | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  𝑓 : suc  𝑡 –onto→ 𝑧 ) | 
						
							| 102 |  | foima | ⊢ ( 𝑓 : suc  𝑡 –onto→ 𝑧  →  ( 𝑓  “  suc  𝑡 )  =  𝑧 ) | 
						
							| 103 | 101 102 | syl | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( 𝑓  “  suc  𝑡 )  =  𝑧 ) | 
						
							| 104 | 100 103 | eqtrd | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( ( 𝑓  “  𝑡 )  ∪  { ( 𝑓 ‘ 𝑡 ) } )  =  𝑧 ) | 
						
							| 105 | 104 | inteqd | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ∩  ( ( 𝑓  “  𝑡 )  ∪  { ( 𝑓 ‘ 𝑡 ) } )  =  ∩  𝑧 ) | 
						
							| 106 | 91 105 | eqtr3id | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  =  ∩  𝑧 ) | 
						
							| 107 | 106 | eleq1d | ⊢ ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴  ↔  ∩  𝑧  ∈  𝐴 ) ) | 
						
							| 108 | 107 | ad2antlr | ⊢ ( ( ( 𝑧  ⊆  𝐴  ∧  𝑓 : suc  𝑡 –1-1-onto→ 𝑧 )  ∧  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ∧  ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴 ) )  →  ( ( ∩  ( 𝑓  “  𝑡 )  ∩  ( 𝑓 ‘ 𝑡 ) )  ∈  𝐴  ↔  ∩  𝑧  ∈  𝐴 ) ) | 
						
							| 109 | 89 108 | mpbid | ⊢ ( ( ( 𝑧  ⊆  𝐴  ∧  𝑓 : suc  𝑡 –1-1-onto→ 𝑧 )  ∧  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  ∧  ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴 ) )  →  ∩  𝑧  ∈  𝐴 ) | 
						
							| 110 | 109 | exp43 | ⊢ ( 𝑧  ⊆  𝐴  →  ( 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ∩  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 111 | 110 | exlimdv | ⊢ ( 𝑧  ⊆  𝐴  →  ( ∃ 𝑓 𝑓 : suc  𝑡 –1-1-onto→ 𝑧  →  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ∩  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 112 | 31 111 | biimtrid | ⊢ ( 𝑧  ⊆  𝐴  →  ( suc  𝑡  ≈  𝑧  →  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ∩  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 113 | 112 | imp | ⊢ ( ( 𝑧  ⊆  𝐴  ∧  suc  𝑡  ≈  𝑧 )  →  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 114 | 113 | adantlr | ⊢ ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  suc  𝑡  ≈  𝑧 )  →  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 115 | 114 | com13 | ⊢ ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  →  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  suc  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 116 | 29 30 115 | alrimd | ⊢ ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  →  ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  suc  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 117 | 116 | a1i | ⊢ ( 𝑡  ∈  ω  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  →  ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  suc  𝑡  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 118 | 8 12 16 28 117 | finds2 | ⊢ ( 𝑤  ∈  ω  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑤  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 119 |  | sp | ⊢ ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑤  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 )  →  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑤  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) ) | 
						
							| 120 | 118 119 | syl6 | ⊢ ( 𝑤  ∈  ω  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑤  ≈  𝑧 )  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 121 | 120 | exp4a | ⊢ ( 𝑤  ∈  ω  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  →  ( 𝑤  ≈  𝑧  →  ∩  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 122 | 121 | com24 | ⊢ ( 𝑤  ∈  ω  →  ( 𝑤  ≈  𝑧  →  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ∩  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 123 | 4 122 | sylbird | ⊢ ( 𝑤  ∈  ω  →  ( 𝑧  ≈  𝑤  →  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ∩  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 124 | 123 | rexlimiv | ⊢ ( ∃ 𝑤  ∈  ω 𝑧  ≈  𝑤  →  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 125 | 1 124 | sylbi | ⊢ ( 𝑧  ∈  Fin  →  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 126 | 125 | com13 | ⊢ ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  →  ( 𝑧  ∈  Fin  →  ∩  𝑧  ∈  𝐴 ) ) ) | 
						
							| 127 | 126 | impd | ⊢ ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑧  ∈  Fin )  →  ∩  𝑧  ∈  𝐴 ) ) | 
						
							| 128 | 127 | alrimiv | ⊢ ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  →  ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑧  ∈  Fin )  →  ∩  𝑧  ∈  𝐴 ) ) | 
						
							| 129 |  | zfpair2 | ⊢ { 𝑣 ,  𝑢 }  ∈  V | 
						
							| 130 |  | sseq1 | ⊢ ( 𝑧  =  { 𝑣 ,  𝑢 }  →  ( 𝑧  ⊆  𝐴  ↔  { 𝑣 ,  𝑢 }  ⊆  𝐴 ) ) | 
						
							| 131 |  | neeq1 | ⊢ ( 𝑧  =  { 𝑣 ,  𝑢 }  →  ( 𝑧  ≠  ∅  ↔  { 𝑣 ,  𝑢 }  ≠  ∅ ) ) | 
						
							| 132 | 130 131 | anbi12d | ⊢ ( 𝑧  =  { 𝑣 ,  𝑢 }  →  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ↔  ( { 𝑣 ,  𝑢 }  ⊆  𝐴  ∧  { 𝑣 ,  𝑢 }  ≠  ∅ ) ) ) | 
						
							| 133 |  | eleq1 | ⊢ ( 𝑧  =  { 𝑣 ,  𝑢 }  →  ( 𝑧  ∈  Fin  ↔  { 𝑣 ,  𝑢 }  ∈  Fin ) ) | 
						
							| 134 | 132 133 | anbi12d | ⊢ ( 𝑧  =  { 𝑣 ,  𝑢 }  →  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑧  ∈  Fin )  ↔  ( ( { 𝑣 ,  𝑢 }  ⊆  𝐴  ∧  { 𝑣 ,  𝑢 }  ≠  ∅ )  ∧  { 𝑣 ,  𝑢 }  ∈  Fin ) ) ) | 
						
							| 135 |  | inteq | ⊢ ( 𝑧  =  { 𝑣 ,  𝑢 }  →  ∩  𝑧  =  ∩  { 𝑣 ,  𝑢 } ) | 
						
							| 136 | 135 | eleq1d | ⊢ ( 𝑧  =  { 𝑣 ,  𝑢 }  →  ( ∩  𝑧  ∈  𝐴  ↔  ∩  { 𝑣 ,  𝑢 }  ∈  𝐴 ) ) | 
						
							| 137 | 134 136 | imbi12d | ⊢ ( 𝑧  =  { 𝑣 ,  𝑢 }  →  ( ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑧  ∈  Fin )  →  ∩  𝑧  ∈  𝐴 )  ↔  ( ( ( { 𝑣 ,  𝑢 }  ⊆  𝐴  ∧  { 𝑣 ,  𝑢 }  ≠  ∅ )  ∧  { 𝑣 ,  𝑢 }  ∈  Fin )  →  ∩  { 𝑣 ,  𝑢 }  ∈  𝐴 ) ) ) | 
						
							| 138 | 129 137 | spcv | ⊢ ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑧  ∈  Fin )  →  ∩  𝑧  ∈  𝐴 )  →  ( ( ( { 𝑣 ,  𝑢 }  ⊆  𝐴  ∧  { 𝑣 ,  𝑢 }  ≠  ∅ )  ∧  { 𝑣 ,  𝑢 }  ∈  Fin )  →  ∩  { 𝑣 ,  𝑢 }  ∈  𝐴 ) ) | 
						
							| 139 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 140 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 141 | 139 140 | prss | ⊢ ( ( 𝑣  ∈  𝐴  ∧  𝑢  ∈  𝐴 )  ↔  { 𝑣 ,  𝑢 }  ⊆  𝐴 ) | 
						
							| 142 | 139 | prnz | ⊢ { 𝑣 ,  𝑢 }  ≠  ∅ | 
						
							| 143 | 142 | biantru | ⊢ ( { 𝑣 ,  𝑢 }  ⊆  𝐴  ↔  ( { 𝑣 ,  𝑢 }  ⊆  𝐴  ∧  { 𝑣 ,  𝑢 }  ≠  ∅ ) ) | 
						
							| 144 |  | prfi | ⊢ { 𝑣 ,  𝑢 }  ∈  Fin | 
						
							| 145 | 144 | biantru | ⊢ ( ( { 𝑣 ,  𝑢 }  ⊆  𝐴  ∧  { 𝑣 ,  𝑢 }  ≠  ∅ )  ↔  ( ( { 𝑣 ,  𝑢 }  ⊆  𝐴  ∧  { 𝑣 ,  𝑢 }  ≠  ∅ )  ∧  { 𝑣 ,  𝑢 }  ∈  Fin ) ) | 
						
							| 146 | 141 143 145 | 3bitrri | ⊢ ( ( ( { 𝑣 ,  𝑢 }  ⊆  𝐴  ∧  { 𝑣 ,  𝑢 }  ≠  ∅ )  ∧  { 𝑣 ,  𝑢 }  ∈  Fin )  ↔  ( 𝑣  ∈  𝐴  ∧  𝑢  ∈  𝐴 ) ) | 
						
							| 147 | 139 140 | intpr | ⊢ ∩  { 𝑣 ,  𝑢 }  =  ( 𝑣  ∩  𝑢 ) | 
						
							| 148 | 147 | eleq1i | ⊢ ( ∩  { 𝑣 ,  𝑢 }  ∈  𝐴  ↔  ( 𝑣  ∩  𝑢 )  ∈  𝐴 ) | 
						
							| 149 | 138 146 148 | 3imtr3g | ⊢ ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑧  ∈  Fin )  →  ∩  𝑧  ∈  𝐴 )  →  ( ( 𝑣  ∈  𝐴  ∧  𝑢  ∈  𝐴 )  →  ( 𝑣  ∩  𝑢 )  ∈  𝐴 ) ) | 
						
							| 150 | 149 | ralrimivv | ⊢ ( ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑧  ∈  Fin )  →  ∩  𝑧  ∈  𝐴 )  →  ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴 ) | 
						
							| 151 | 128 150 | impbii | ⊢ ( ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴  ↔  ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑧  ∈  Fin )  →  ∩  𝑧  ∈  𝐴 ) ) | 
						
							| 152 |  | ineq1 | ⊢ ( 𝑥  =  𝑣  →  ( 𝑥  ∩  𝑦 )  =  ( 𝑣  ∩  𝑦 ) ) | 
						
							| 153 | 152 | eleq1d | ⊢ ( 𝑥  =  𝑣  →  ( ( 𝑥  ∩  𝑦 )  ∈  𝐴  ↔  ( 𝑣  ∩  𝑦 )  ∈  𝐴 ) ) | 
						
							| 154 |  | ineq2 | ⊢ ( 𝑦  =  𝑢  →  ( 𝑣  ∩  𝑦 )  =  ( 𝑣  ∩  𝑢 ) ) | 
						
							| 155 | 154 | eleq1d | ⊢ ( 𝑦  =  𝑢  →  ( ( 𝑣  ∩  𝑦 )  ∈  𝐴  ↔  ( 𝑣  ∩  𝑢 )  ∈  𝐴 ) ) | 
						
							| 156 | 153 155 | cbvral2vw | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∩  𝑦 )  ∈  𝐴  ↔  ∀ 𝑣  ∈  𝐴 ∀ 𝑢  ∈  𝐴 ( 𝑣  ∩  𝑢 )  ∈  𝐴 ) | 
						
							| 157 |  | df-3an | ⊢ ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧  𝑧  ∈  Fin )  ↔  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑧  ∈  Fin ) ) | 
						
							| 158 | 157 | imbi1i | ⊢ ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧  𝑧  ∈  Fin )  →  ∩  𝑧  ∈  𝐴 )  ↔  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑧  ∈  Fin )  →  ∩  𝑧  ∈  𝐴 ) ) | 
						
							| 159 | 158 | albii | ⊢ ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧  𝑧  ∈  Fin )  →  ∩  𝑧  ∈  𝐴 )  ↔  ∀ 𝑧 ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ∧  𝑧  ∈  Fin )  →  ∩  𝑧  ∈  𝐴 ) ) | 
						
							| 160 | 151 156 159 | 3bitr4i | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∩  𝑦 )  ∈  𝐴  ↔  ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧  𝑧  ∈  Fin )  →  ∩  𝑧  ∈  𝐴 ) ) |