| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfi | ⊢ ( 𝑥  ∈  Fin  ↔  ∃ 𝑦  ∈  ω 𝑥  ≈  𝑦 ) | 
						
							| 2 |  | ensym | ⊢ ( 𝑥  ≈  𝑦  →  𝑦  ≈  𝑥 ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝑦  =  ∅  →  ( 𝑦  ≈  𝑥  ↔  ∅  ≈  𝑥 ) ) | 
						
							| 4 | 3 | anbi2d | ⊢ ( 𝑦  =  ∅  →  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ≈  𝑥 )  ↔  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  ∅  ≈  𝑥 ) ) ) | 
						
							| 5 | 4 | imbi1d | ⊢ ( 𝑦  =  ∅  →  ( ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ↔  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  ∅  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 6 | 5 | albidv | ⊢ ( 𝑦  =  ∅  →  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ↔  ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  ∅  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 7 |  | breq1 | ⊢ ( 𝑦  =  𝑣  →  ( 𝑦  ≈  𝑥  ↔  𝑣  ≈  𝑥 ) ) | 
						
							| 8 | 7 | anbi2d | ⊢ ( 𝑦  =  𝑣  →  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ≈  𝑥 )  ↔  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 ) ) ) | 
						
							| 9 | 8 | imbi1d | ⊢ ( 𝑦  =  𝑣  →  ( ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ↔  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 10 | 9 | albidv | ⊢ ( 𝑦  =  𝑣  →  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ↔  ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 11 |  | breq1 | ⊢ ( 𝑦  =  suc  𝑣  →  ( 𝑦  ≈  𝑥  ↔  suc  𝑣  ≈  𝑥 ) ) | 
						
							| 12 | 11 | anbi2d | ⊢ ( 𝑦  =  suc  𝑣  →  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ≈  𝑥 )  ↔  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  suc  𝑣  ≈  𝑥 ) ) ) | 
						
							| 13 | 12 | imbi1d | ⊢ ( 𝑦  =  suc  𝑣  →  ( ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ↔  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  suc  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 14 | 13 | albidv | ⊢ ( 𝑦  =  suc  𝑣  →  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ↔  ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  suc  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 15 |  | ensym | ⊢ ( ∅  ≈  𝑥  →  𝑥  ≈  ∅ ) | 
						
							| 16 |  | en0 | ⊢ ( 𝑥  ≈  ∅  ↔  𝑥  =  ∅ ) | 
						
							| 17 | 15 16 | sylib | ⊢ ( ∅  ≈  𝑥  →  𝑥  =  ∅ ) | 
						
							| 18 | 17 | anim1i | ⊢ ( ( ∅  ≈  𝑥  ∧  𝑥  ≠  ∅ )  →  ( 𝑥  =  ∅  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 19 | 18 | ancoms | ⊢ ( ( 𝑥  ≠  ∅  ∧  ∅  ≈  𝑥 )  →  ( 𝑥  =  ∅  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 20 | 19 | adantll | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  ∅  ≈  𝑥 )  →  ( 𝑥  =  ∅  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 21 |  | df-ne | ⊢ ( 𝑥  ≠  ∅  ↔  ¬  𝑥  =  ∅ ) | 
						
							| 22 |  | pm3.24 | ⊢ ¬  ( 𝑥  =  ∅  ∧  ¬  𝑥  =  ∅ ) | 
						
							| 23 | 22 | pm2.21i | ⊢ ( ( 𝑥  =  ∅  ∧  ¬  𝑥  =  ∅ )  →  ∩  𝑥  ∈  𝐴 ) | 
						
							| 24 | 21 23 | sylan2b | ⊢ ( ( 𝑥  =  ∅  ∧  𝑥  ≠  ∅ )  →  ∩  𝑥  ∈  𝐴 ) | 
						
							| 25 | 20 24 | syl | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  ∅  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) | 
						
							| 26 | 25 | ax-gen | ⊢ ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  ∅  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) | 
						
							| 27 | 26 | a1i | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  ∅  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) ) | 
						
							| 28 |  | nfv | ⊢ Ⅎ 𝑥 ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴 | 
						
							| 29 |  | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) | 
						
							| 30 |  | bren | ⊢ ( suc  𝑣  ≈  𝑥  ↔  ∃ 𝑓 𝑓 : suc  𝑣 –1-1-onto→ 𝑥 ) | 
						
							| 31 |  | ssel | ⊢ ( 𝑥  ⊆  𝐴  →  ( ( 𝑓 ‘ 𝑣 )  ∈  𝑥  →  ( 𝑓 ‘ 𝑣 )  ∈  𝐴 ) ) | 
						
							| 32 |  | f1of | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  𝑓 : suc  𝑣 ⟶ 𝑥 ) | 
						
							| 33 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 34 | 33 | sucid | ⊢ 𝑣  ∈  suc  𝑣 | 
						
							| 35 |  | ffvelcdm | ⊢ ( ( 𝑓 : suc  𝑣 ⟶ 𝑥  ∧  𝑣  ∈  suc  𝑣 )  →  ( 𝑓 ‘ 𝑣 )  ∈  𝑥 ) | 
						
							| 36 | 32 34 35 | sylancl | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( 𝑓 ‘ 𝑣 )  ∈  𝑥 ) | 
						
							| 37 | 31 36 | impel | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑓 : suc  𝑣 –1-1-onto→ 𝑥 )  →  ( 𝑓 ‘ 𝑣 )  ∈  𝐴 ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑓 : suc  𝑣 –1-1-onto→ 𝑥 )  ∧  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴 ) )  →  ( 𝑓 ‘ 𝑣 )  ∈  𝐴 ) | 
						
							| 39 |  | df-ne | ⊢ ( ( 𝑓  “  𝑣 )  ≠  ∅  ↔  ¬  ( 𝑓  “  𝑣 )  =  ∅ ) | 
						
							| 40 |  | imassrn | ⊢ ( 𝑓  “  𝑣 )  ⊆  ran  𝑓 | 
						
							| 41 |  | dff1o2 | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  ↔  ( 𝑓  Fn  suc  𝑣  ∧  Fun  ◡ 𝑓  ∧  ran  𝑓  =  𝑥 ) ) | 
						
							| 42 | 41 | simp3bi | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ran  𝑓  =  𝑥 ) | 
						
							| 43 | 40 42 | sseqtrid | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( 𝑓  “  𝑣 )  ⊆  𝑥 ) | 
						
							| 44 |  | sstr2 | ⊢ ( ( 𝑓  “  𝑣 )  ⊆  𝑥  →  ( 𝑥  ⊆  𝐴  →  ( 𝑓  “  𝑣 )  ⊆  𝐴 ) ) | 
						
							| 45 | 43 44 | syl | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( 𝑥  ⊆  𝐴  →  ( 𝑓  “  𝑣 )  ⊆  𝐴 ) ) | 
						
							| 46 | 45 | anim1d | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( ( 𝑥  ⊆  𝐴  ∧  ( 𝑓  “  𝑣 )  ≠  ∅ )  →  ( ( 𝑓  “  𝑣 )  ⊆  𝐴  ∧  ( 𝑓  “  𝑣 )  ≠  ∅ ) ) ) | 
						
							| 47 |  | f1of1 | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  𝑓 : suc  𝑣 –1-1→ 𝑥 ) | 
						
							| 48 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 49 |  | sssucid | ⊢ 𝑣  ⊆  suc  𝑣 | 
						
							| 50 |  | f1imaen2g | ⊢ ( ( ( 𝑓 : suc  𝑣 –1-1→ 𝑥  ∧  𝑥  ∈  V )  ∧  ( 𝑣  ⊆  suc  𝑣  ∧  𝑣  ∈  V ) )  →  ( 𝑓  “  𝑣 )  ≈  𝑣 ) | 
						
							| 51 | 49 33 50 | mpanr12 | ⊢ ( ( 𝑓 : suc  𝑣 –1-1→ 𝑥  ∧  𝑥  ∈  V )  →  ( 𝑓  “  𝑣 )  ≈  𝑣 ) | 
						
							| 52 | 47 48 51 | sylancl | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( 𝑓  “  𝑣 )  ≈  𝑣 ) | 
						
							| 53 | 52 | ensymd | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  𝑣  ≈  ( 𝑓  “  𝑣 ) ) | 
						
							| 54 | 46 53 | jctird | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( ( 𝑥  ⊆  𝐴  ∧  ( 𝑓  “  𝑣 )  ≠  ∅ )  →  ( ( ( 𝑓  “  𝑣 )  ⊆  𝐴  ∧  ( 𝑓  “  𝑣 )  ≠  ∅ )  ∧  𝑣  ≈  ( 𝑓  “  𝑣 ) ) ) ) | 
						
							| 55 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 56 | 55 | imaex | ⊢ ( 𝑓  “  𝑣 )  ∈  V | 
						
							| 57 |  | sseq1 | ⊢ ( 𝑥  =  ( 𝑓  “  𝑣 )  →  ( 𝑥  ⊆  𝐴  ↔  ( 𝑓  “  𝑣 )  ⊆  𝐴 ) ) | 
						
							| 58 |  | neeq1 | ⊢ ( 𝑥  =  ( 𝑓  “  𝑣 )  →  ( 𝑥  ≠  ∅  ↔  ( 𝑓  “  𝑣 )  ≠  ∅ ) ) | 
						
							| 59 | 57 58 | anbi12d | ⊢ ( 𝑥  =  ( 𝑓  “  𝑣 )  →  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ↔  ( ( 𝑓  “  𝑣 )  ⊆  𝐴  ∧  ( 𝑓  “  𝑣 )  ≠  ∅ ) ) ) | 
						
							| 60 |  | breq2 | ⊢ ( 𝑥  =  ( 𝑓  “  𝑣 )  →  ( 𝑣  ≈  𝑥  ↔  𝑣  ≈  ( 𝑓  “  𝑣 ) ) ) | 
						
							| 61 | 59 60 | anbi12d | ⊢ ( 𝑥  =  ( 𝑓  “  𝑣 )  →  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  ↔  ( ( ( 𝑓  “  𝑣 )  ⊆  𝐴  ∧  ( 𝑓  “  𝑣 )  ≠  ∅ )  ∧  𝑣  ≈  ( 𝑓  “  𝑣 ) ) ) ) | 
						
							| 62 |  | inteq | ⊢ ( 𝑥  =  ( 𝑓  “  𝑣 )  →  ∩  𝑥  =  ∩  ( 𝑓  “  𝑣 ) ) | 
						
							| 63 | 62 | eleq1d | ⊢ ( 𝑥  =  ( 𝑓  “  𝑣 )  →  ( ∩  𝑥  ∈  𝐴  ↔  ∩  ( 𝑓  “  𝑣 )  ∈  𝐴 ) ) | 
						
							| 64 | 61 63 | imbi12d | ⊢ ( 𝑥  =  ( 𝑓  “  𝑣 )  →  ( ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ↔  ( ( ( ( 𝑓  “  𝑣 )  ⊆  𝐴  ∧  ( 𝑓  “  𝑣 )  ≠  ∅ )  ∧  𝑣  ≈  ( 𝑓  “  𝑣 ) )  →  ∩  ( 𝑓  “  𝑣 )  ∈  𝐴 ) ) ) | 
						
							| 65 | 56 64 | spcv | ⊢ ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  →  ( ( ( ( 𝑓  “  𝑣 )  ⊆  𝐴  ∧  ( 𝑓  “  𝑣 )  ≠  ∅ )  ∧  𝑣  ≈  ( 𝑓  “  𝑣 ) )  →  ∩  ( 𝑓  “  𝑣 )  ∈  𝐴 ) ) | 
						
							| 66 | 54 65 | sylan9 | ⊢ ( ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  ∧  ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) )  →  ( ( 𝑥  ⊆  𝐴  ∧  ( 𝑓  “  𝑣 )  ≠  ∅ )  →  ∩  ( 𝑓  “  𝑣 )  ∈  𝐴 ) ) | 
						
							| 67 |  | ineq1 | ⊢ ( 𝑧  =  ∩  ( 𝑓  “  𝑣 )  →  ( 𝑧  ∩  𝑤 )  =  ( ∩  ( 𝑓  “  𝑣 )  ∩  𝑤 ) ) | 
						
							| 68 | 67 | eleq1d | ⊢ ( 𝑧  =  ∩  ( 𝑓  “  𝑣 )  →  ( ( 𝑧  ∩  𝑤 )  ∈  𝐴  ↔  ( ∩  ( 𝑓  “  𝑣 )  ∩  𝑤 )  ∈  𝐴 ) ) | 
						
							| 69 |  | ineq2 | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑣 )  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  𝑤 )  =  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) ) ) | 
						
							| 70 | 69 | eleq1d | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑣 )  →  ( ( ∩  ( 𝑓  “  𝑣 )  ∩  𝑤 )  ∈  𝐴  ↔  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴 ) ) | 
						
							| 71 | 68 70 | rspc2v | ⊢ ( ( ∩  ( 𝑓  “  𝑣 )  ∈  𝐴  ∧  ( 𝑓 ‘ 𝑣 )  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴 ) ) | 
						
							| 72 | 71 | ex | ⊢ ( ∩  ( 𝑓  “  𝑣 )  ∈  𝐴  →  ( ( 𝑓 ‘ 𝑣 )  ∈  𝐴  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴 ) ) ) | 
						
							| 73 | 66 72 | syl6 | ⊢ ( ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  ∧  ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) )  →  ( ( 𝑥  ⊆  𝐴  ∧  ( 𝑓  “  𝑣 )  ≠  ∅ )  →  ( ( 𝑓 ‘ 𝑣 )  ∈  𝐴  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴 ) ) ) ) | 
						
							| 74 | 73 | com4r | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ( ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  ∧  ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) )  →  ( ( 𝑥  ⊆  𝐴  ∧  ( 𝑓  “  𝑣 )  ≠  ∅ )  →  ( ( 𝑓 ‘ 𝑣 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴 ) ) ) ) | 
						
							| 75 | 74 | exp5c | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  →  ( 𝑥  ⊆  𝐴  →  ( ( 𝑓  “  𝑣 )  ≠  ∅  →  ( ( 𝑓 ‘ 𝑣 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴 ) ) ) ) ) ) | 
						
							| 76 | 75 | com14 | ⊢ ( 𝑥  ⊆  𝐴  →  ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ( ( 𝑓  “  𝑣 )  ≠  ∅  →  ( ( 𝑓 ‘ 𝑣 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴 ) ) ) ) ) ) | 
						
							| 77 | 76 | imp43 | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑓 : suc  𝑣 –1-1-onto→ 𝑥 )  ∧  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴 ) )  →  ( ( 𝑓  “  𝑣 )  ≠  ∅  →  ( ( 𝑓 ‘ 𝑣 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴 ) ) ) | 
						
							| 78 | 39 77 | biimtrrid | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑓 : suc  𝑣 –1-1-onto→ 𝑥 )  ∧  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴 ) )  →  ( ¬  ( 𝑓  “  𝑣 )  =  ∅  →  ( ( 𝑓 ‘ 𝑣 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴 ) ) ) | 
						
							| 79 |  | inteq | ⊢ ( ( 𝑓  “  𝑣 )  =  ∅  →  ∩  ( 𝑓  “  𝑣 )  =  ∩  ∅ ) | 
						
							| 80 |  | int0 | ⊢ ∩  ∅  =  V | 
						
							| 81 | 79 80 | eqtrdi | ⊢ ( ( 𝑓  “  𝑣 )  =  ∅  →  ∩  ( 𝑓  “  𝑣 )  =  V ) | 
						
							| 82 | 81 | ineq1d | ⊢ ( ( 𝑓  “  𝑣 )  =  ∅  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  =  ( V  ∩  ( 𝑓 ‘ 𝑣 ) ) ) | 
						
							| 83 |  | ssv | ⊢ ( 𝑓 ‘ 𝑣 )  ⊆  V | 
						
							| 84 |  | sseqin2 | ⊢ ( ( 𝑓 ‘ 𝑣 )  ⊆  V  ↔  ( V  ∩  ( 𝑓 ‘ 𝑣 ) )  =  ( 𝑓 ‘ 𝑣 ) ) | 
						
							| 85 | 83 84 | mpbi | ⊢ ( V  ∩  ( 𝑓 ‘ 𝑣 ) )  =  ( 𝑓 ‘ 𝑣 ) | 
						
							| 86 | 82 85 | eqtrdi | ⊢ ( ( 𝑓  “  𝑣 )  =  ∅  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  =  ( 𝑓 ‘ 𝑣 ) ) | 
						
							| 87 | 86 | eleq1d | ⊢ ( ( 𝑓  “  𝑣 )  =  ∅  →  ( ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴  ↔  ( 𝑓 ‘ 𝑣 )  ∈  𝐴 ) ) | 
						
							| 88 | 87 | biimprd | ⊢ ( ( 𝑓  “  𝑣 )  =  ∅  →  ( ( 𝑓 ‘ 𝑣 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴 ) ) | 
						
							| 89 | 78 88 | pm2.61d2 | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑓 : suc  𝑣 –1-1-onto→ 𝑥 )  ∧  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴 ) )  →  ( ( 𝑓 ‘ 𝑣 )  ∈  𝐴  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴 ) ) | 
						
							| 90 | 38 89 | mpd | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑓 : suc  𝑣 –1-1-onto→ 𝑥 )  ∧  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴 ) )  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴 ) | 
						
							| 91 |  | fvex | ⊢ ( 𝑓 ‘ 𝑣 )  ∈  V | 
						
							| 92 | 91 | intunsn | ⊢ ∩  ( ( 𝑓  “  𝑣 )  ∪  { ( 𝑓 ‘ 𝑣 ) } )  =  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) ) | 
						
							| 93 |  | f1ofn | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  𝑓  Fn  suc  𝑣 ) | 
						
							| 94 |  | fnsnfv | ⊢ ( ( 𝑓  Fn  suc  𝑣  ∧  𝑣  ∈  suc  𝑣 )  →  { ( 𝑓 ‘ 𝑣 ) }  =  ( 𝑓  “  { 𝑣 } ) ) | 
						
							| 95 | 93 34 94 | sylancl | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  { ( 𝑓 ‘ 𝑣 ) }  =  ( 𝑓  “  { 𝑣 } ) ) | 
						
							| 96 | 95 | uneq2d | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( ( 𝑓  “  𝑣 )  ∪  { ( 𝑓 ‘ 𝑣 ) } )  =  ( ( 𝑓  “  𝑣 )  ∪  ( 𝑓  “  { 𝑣 } ) ) ) | 
						
							| 97 |  | df-suc | ⊢ suc  𝑣  =  ( 𝑣  ∪  { 𝑣 } ) | 
						
							| 98 | 97 | imaeq2i | ⊢ ( 𝑓  “  suc  𝑣 )  =  ( 𝑓  “  ( 𝑣  ∪  { 𝑣 } ) ) | 
						
							| 99 |  | imaundi | ⊢ ( 𝑓  “  ( 𝑣  ∪  { 𝑣 } ) )  =  ( ( 𝑓  “  𝑣 )  ∪  ( 𝑓  “  { 𝑣 } ) ) | 
						
							| 100 | 98 99 | eqtr2i | ⊢ ( ( 𝑓  “  𝑣 )  ∪  ( 𝑓  “  { 𝑣 } ) )  =  ( 𝑓  “  suc  𝑣 ) | 
						
							| 101 | 96 100 | eqtrdi | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( ( 𝑓  “  𝑣 )  ∪  { ( 𝑓 ‘ 𝑣 ) } )  =  ( 𝑓  “  suc  𝑣 ) ) | 
						
							| 102 |  | f1ofo | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  𝑓 : suc  𝑣 –onto→ 𝑥 ) | 
						
							| 103 |  | foima | ⊢ ( 𝑓 : suc  𝑣 –onto→ 𝑥  →  ( 𝑓  “  suc  𝑣 )  =  𝑥 ) | 
						
							| 104 | 102 103 | syl | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( 𝑓  “  suc  𝑣 )  =  𝑥 ) | 
						
							| 105 | 101 104 | eqtrd | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( ( 𝑓  “  𝑣 )  ∪  { ( 𝑓 ‘ 𝑣 ) } )  =  𝑥 ) | 
						
							| 106 | 105 | inteqd | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ∩  ( ( 𝑓  “  𝑣 )  ∪  { ( 𝑓 ‘ 𝑣 ) } )  =  ∩  𝑥 ) | 
						
							| 107 | 92 106 | eqtr3id | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  =  ∩  𝑥 ) | 
						
							| 108 | 107 | eleq1d | ⊢ ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴  ↔  ∩  𝑥  ∈  𝐴 ) ) | 
						
							| 109 | 108 | ad2antlr | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑓 : suc  𝑣 –1-1-onto→ 𝑥 )  ∧  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴 ) )  →  ( ( ∩  ( 𝑓  “  𝑣 )  ∩  ( 𝑓 ‘ 𝑣 ) )  ∈  𝐴  ↔  ∩  𝑥  ∈  𝐴 ) ) | 
						
							| 110 | 90 109 | mpbid | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑓 : suc  𝑣 –1-1-onto→ 𝑥 )  ∧  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴 ) )  →  ∩  𝑥  ∈  𝐴 ) | 
						
							| 111 | 110 | exp43 | ⊢ ( 𝑥  ⊆  𝐴  →  ( 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ∩  𝑥  ∈  𝐴 ) ) ) ) | 
						
							| 112 | 111 | exlimdv | ⊢ ( 𝑥  ⊆  𝐴  →  ( ∃ 𝑓 𝑓 : suc  𝑣 –1-1-onto→ 𝑥  →  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ∩  𝑥  ∈  𝐴 ) ) ) ) | 
						
							| 113 | 30 112 | biimtrid | ⊢ ( 𝑥  ⊆  𝐴  →  ( suc  𝑣  ≈  𝑥  →  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ∩  𝑥  ∈  𝐴 ) ) ) ) | 
						
							| 114 | 113 | imp | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  suc  𝑣  ≈  𝑥 )  →  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 115 | 114 | adantlr | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  suc  𝑣  ≈  𝑥 )  →  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 116 | 115 | com13 | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  →  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  suc  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 117 | 28 29 116 | alrimd | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  →  ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  suc  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 118 | 117 | a1i | ⊢ ( 𝑣  ∈  ω  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  →  ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  suc  𝑣  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) ) ) ) | 
						
							| 119 | 6 10 14 27 118 | finds2 | ⊢ ( 𝑦  ∈  ω  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 120 |  | sp | ⊢ ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 )  →  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) ) | 
						
							| 121 | 119 120 | syl6 | ⊢ ( 𝑦  ∈  ω  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ≈  𝑥 )  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 122 | 121 | exp4a | ⊢ ( 𝑦  ∈  ω  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ( 𝑦  ≈  𝑥  →  ∩  𝑥  ∈  𝐴 ) ) ) ) | 
						
							| 123 | 122 | com24 | ⊢ ( 𝑦  ∈  ω  →  ( 𝑦  ≈  𝑥  →  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ∩  𝑥  ∈  𝐴 ) ) ) ) | 
						
							| 124 | 2 123 | syl5 | ⊢ ( 𝑦  ∈  ω  →  ( 𝑥  ≈  𝑦  →  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ∩  𝑥  ∈  𝐴 ) ) ) ) | 
						
							| 125 | 124 | rexlimiv | ⊢ ( ∃ 𝑦  ∈  ω 𝑥  ≈  𝑦  →  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 126 | 1 125 | sylbi | ⊢ ( 𝑥  ∈  Fin  →  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 127 | 126 | com13 | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ( 𝑥  ∈  Fin  →  ∩  𝑥  ∈  𝐴 ) ) ) | 
						
							| 128 | 127 | impd | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑥  ∈  Fin )  →  ∩  𝑥  ∈  𝐴 ) ) | 
						
							| 129 | 128 | alrimiv | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  →  ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑥  ∈  Fin )  →  ∩  𝑥  ∈  𝐴 ) ) | 
						
							| 130 |  | zfpair2 | ⊢ { 𝑧 ,  𝑤 }  ∈  V | 
						
							| 131 |  | sseq1 | ⊢ ( 𝑥  =  { 𝑧 ,  𝑤 }  →  ( 𝑥  ⊆  𝐴  ↔  { 𝑧 ,  𝑤 }  ⊆  𝐴 ) ) | 
						
							| 132 |  | neeq1 | ⊢ ( 𝑥  =  { 𝑧 ,  𝑤 }  →  ( 𝑥  ≠  ∅  ↔  { 𝑧 ,  𝑤 }  ≠  ∅ ) ) | 
						
							| 133 | 131 132 | anbi12d | ⊢ ( 𝑥  =  { 𝑧 ,  𝑤 }  →  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ↔  ( { 𝑧 ,  𝑤 }  ⊆  𝐴  ∧  { 𝑧 ,  𝑤 }  ≠  ∅ ) ) ) | 
						
							| 134 |  | eleq1 | ⊢ ( 𝑥  =  { 𝑧 ,  𝑤 }  →  ( 𝑥  ∈  Fin  ↔  { 𝑧 ,  𝑤 }  ∈  Fin ) ) | 
						
							| 135 | 133 134 | anbi12d | ⊢ ( 𝑥  =  { 𝑧 ,  𝑤 }  →  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑥  ∈  Fin )  ↔  ( ( { 𝑧 ,  𝑤 }  ⊆  𝐴  ∧  { 𝑧 ,  𝑤 }  ≠  ∅ )  ∧  { 𝑧 ,  𝑤 }  ∈  Fin ) ) ) | 
						
							| 136 |  | inteq | ⊢ ( 𝑥  =  { 𝑧 ,  𝑤 }  →  ∩  𝑥  =  ∩  { 𝑧 ,  𝑤 } ) | 
						
							| 137 | 136 | eleq1d | ⊢ ( 𝑥  =  { 𝑧 ,  𝑤 }  →  ( ∩  𝑥  ∈  𝐴  ↔  ∩  { 𝑧 ,  𝑤 }  ∈  𝐴 ) ) | 
						
							| 138 | 135 137 | imbi12d | ⊢ ( 𝑥  =  { 𝑧 ,  𝑤 }  →  ( ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑥  ∈  Fin )  →  ∩  𝑥  ∈  𝐴 )  ↔  ( ( ( { 𝑧 ,  𝑤 }  ⊆  𝐴  ∧  { 𝑧 ,  𝑤 }  ≠  ∅ )  ∧  { 𝑧 ,  𝑤 }  ∈  Fin )  →  ∩  { 𝑧 ,  𝑤 }  ∈  𝐴 ) ) ) | 
						
							| 139 | 130 138 | spcv | ⊢ ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑥  ∈  Fin )  →  ∩  𝑥  ∈  𝐴 )  →  ( ( ( { 𝑧 ,  𝑤 }  ⊆  𝐴  ∧  { 𝑧 ,  𝑤 }  ≠  ∅ )  ∧  { 𝑧 ,  𝑤 }  ∈  Fin )  →  ∩  { 𝑧 ,  𝑤 }  ∈  𝐴 ) ) | 
						
							| 140 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 141 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 142 | 140 141 | prss | ⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  ↔  { 𝑧 ,  𝑤 }  ⊆  𝐴 ) | 
						
							| 143 | 140 | prnz | ⊢ { 𝑧 ,  𝑤 }  ≠  ∅ | 
						
							| 144 | 143 | biantru | ⊢ ( { 𝑧 ,  𝑤 }  ⊆  𝐴  ↔  ( { 𝑧 ,  𝑤 }  ⊆  𝐴  ∧  { 𝑧 ,  𝑤 }  ≠  ∅ ) ) | 
						
							| 145 |  | prfi | ⊢ { 𝑧 ,  𝑤 }  ∈  Fin | 
						
							| 146 | 145 | biantru | ⊢ ( ( { 𝑧 ,  𝑤 }  ⊆  𝐴  ∧  { 𝑧 ,  𝑤 }  ≠  ∅ )  ↔  ( ( { 𝑧 ,  𝑤 }  ⊆  𝐴  ∧  { 𝑧 ,  𝑤 }  ≠  ∅ )  ∧  { 𝑧 ,  𝑤 }  ∈  Fin ) ) | 
						
							| 147 | 142 144 146 | 3bitrri | ⊢ ( ( ( { 𝑧 ,  𝑤 }  ⊆  𝐴  ∧  { 𝑧 ,  𝑤 }  ≠  ∅ )  ∧  { 𝑧 ,  𝑤 }  ∈  Fin )  ↔  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐴 ) ) | 
						
							| 148 | 140 141 | intpr | ⊢ ∩  { 𝑧 ,  𝑤 }  =  ( 𝑧  ∩  𝑤 ) | 
						
							| 149 | 148 | eleq1i | ⊢ ( ∩  { 𝑧 ,  𝑤 }  ∈  𝐴  ↔  ( 𝑧  ∩  𝑤 )  ∈  𝐴 ) | 
						
							| 150 | 139 147 149 | 3imtr3g | ⊢ ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑥  ∈  Fin )  →  ∩  𝑥  ∈  𝐴 )  →  ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  →  ( 𝑧  ∩  𝑤 )  ∈  𝐴 ) ) | 
						
							| 151 | 150 | ralrimivv | ⊢ ( ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑥  ∈  Fin )  →  ∩  𝑥  ∈  𝐴 )  →  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴 ) | 
						
							| 152 | 129 151 | impbii | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴  ↔  ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑥  ∈  Fin )  →  ∩  𝑥  ∈  𝐴 ) ) | 
						
							| 153 |  | ineq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∩  𝑦 )  =  ( 𝑧  ∩  𝑦 ) ) | 
						
							| 154 | 153 | eleq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  ∩  𝑦 )  ∈  𝐴  ↔  ( 𝑧  ∩  𝑦 )  ∈  𝐴 ) ) | 
						
							| 155 |  | ineq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑧  ∩  𝑦 )  =  ( 𝑧  ∩  𝑤 ) ) | 
						
							| 156 | 155 | eleq1d | ⊢ ( 𝑦  =  𝑤  →  ( ( 𝑧  ∩  𝑦 )  ∈  𝐴  ↔  ( 𝑧  ∩  𝑤 )  ∈  𝐴 ) ) | 
						
							| 157 | 154 156 | cbvral2vw | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∩  𝑦 )  ∈  𝐴  ↔  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ∩  𝑤 )  ∈  𝐴 ) | 
						
							| 158 |  | df-3an | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅  ∧  𝑥  ∈  Fin )  ↔  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑥  ∈  Fin ) ) | 
						
							| 159 | 158 | imbi1i | ⊢ ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅  ∧  𝑥  ∈  Fin )  →  ∩  𝑥  ∈  𝐴 )  ↔  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑥  ∈  Fin )  →  ∩  𝑥  ∈  𝐴 ) ) | 
						
							| 160 | 159 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅  ∧  𝑥  ∈  Fin )  →  ∩  𝑥  ∈  𝐴 )  ↔  ∀ 𝑥 ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ∧  𝑥  ∈  Fin )  →  ∩  𝑥  ∈  𝐴 ) ) | 
						
							| 161 | 152 157 160 | 3bitr4i | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∩  𝑦 )  ∈  𝐴  ↔  ∀ 𝑥 ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅  ∧  𝑥  ∈  Fin )  →  ∩  𝑥  ∈  𝐴 ) ) |