| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfi |
⊢ ( 𝑥 ∈ Fin ↔ ∃ 𝑦 ∈ ω 𝑥 ≈ 𝑦 ) |
| 2 |
|
ensym |
⊢ ( 𝑥 ≈ 𝑦 → 𝑦 ≈ 𝑥 ) |
| 3 |
|
breq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ≈ 𝑥 ↔ ∅ ≈ 𝑥 ) ) |
| 4 |
3
|
anbi2d |
⊢ ( 𝑦 = ∅ → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) ) ) |
| 5 |
4
|
imbi1d |
⊢ ( 𝑦 = ∅ → ( ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 6 |
5
|
albidv |
⊢ ( 𝑦 = ∅ → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 7 |
|
breq1 |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 ≈ 𝑥 ↔ 𝑣 ≈ 𝑥 ) ) |
| 8 |
7
|
anbi2d |
⊢ ( 𝑦 = 𝑣 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) ) ) |
| 9 |
8
|
imbi1d |
⊢ ( 𝑦 = 𝑣 → ( ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 10 |
9
|
albidv |
⊢ ( 𝑦 = 𝑣 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 11 |
|
breq1 |
⊢ ( 𝑦 = suc 𝑣 → ( 𝑦 ≈ 𝑥 ↔ suc 𝑣 ≈ 𝑥 ) ) |
| 12 |
11
|
anbi2d |
⊢ ( 𝑦 = suc 𝑣 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) ) ) |
| 13 |
12
|
imbi1d |
⊢ ( 𝑦 = suc 𝑣 → ( ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 14 |
13
|
albidv |
⊢ ( 𝑦 = suc 𝑣 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 15 |
|
ensym |
⊢ ( ∅ ≈ 𝑥 → 𝑥 ≈ ∅ ) |
| 16 |
|
en0 |
⊢ ( 𝑥 ≈ ∅ ↔ 𝑥 = ∅ ) |
| 17 |
15 16
|
sylib |
⊢ ( ∅ ≈ 𝑥 → 𝑥 = ∅ ) |
| 18 |
17
|
anim1i |
⊢ ( ( ∅ ≈ 𝑥 ∧ 𝑥 ≠ ∅ ) → ( 𝑥 = ∅ ∧ 𝑥 ≠ ∅ ) ) |
| 19 |
18
|
ancoms |
⊢ ( ( 𝑥 ≠ ∅ ∧ ∅ ≈ 𝑥 ) → ( 𝑥 = ∅ ∧ 𝑥 ≠ ∅ ) ) |
| 20 |
19
|
adantll |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) → ( 𝑥 = ∅ ∧ 𝑥 ≠ ∅ ) ) |
| 21 |
|
df-ne |
⊢ ( 𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅ ) |
| 22 |
|
pm3.24 |
⊢ ¬ ( 𝑥 = ∅ ∧ ¬ 𝑥 = ∅ ) |
| 23 |
22
|
pm2.21i |
⊢ ( ( 𝑥 = ∅ ∧ ¬ 𝑥 = ∅ ) → ∩ 𝑥 ∈ 𝐴 ) |
| 24 |
21 23
|
sylan2b |
⊢ ( ( 𝑥 = ∅ ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐴 ) |
| 25 |
20 24
|
syl |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) |
| 26 |
25
|
ax-gen |
⊢ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) |
| 27 |
26
|
a1i |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) |
| 28 |
|
nfv |
⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 |
| 29 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) |
| 30 |
|
bren |
⊢ ( suc 𝑣 ≈ 𝑥 ↔ ∃ 𝑓 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) |
| 31 |
|
ssel |
⊢ ( 𝑥 ⊆ 𝐴 → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑥 → ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 ) ) |
| 32 |
|
f1of |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → 𝑓 : suc 𝑣 ⟶ 𝑥 ) |
| 33 |
|
vex |
⊢ 𝑣 ∈ V |
| 34 |
33
|
sucid |
⊢ 𝑣 ∈ suc 𝑣 |
| 35 |
|
ffvelcdm |
⊢ ( ( 𝑓 : suc 𝑣 ⟶ 𝑥 ∧ 𝑣 ∈ suc 𝑣 ) → ( 𝑓 ‘ 𝑣 ) ∈ 𝑥 ) |
| 36 |
32 34 35
|
sylancl |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( 𝑓 ‘ 𝑣 ) ∈ 𝑥 ) |
| 37 |
31 36
|
impel |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) → ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 ) |
| 38 |
37
|
adantr |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 ) |
| 39 |
|
df-ne |
⊢ ( ( 𝑓 “ 𝑣 ) ≠ ∅ ↔ ¬ ( 𝑓 “ 𝑣 ) = ∅ ) |
| 40 |
|
imassrn |
⊢ ( 𝑓 “ 𝑣 ) ⊆ ran 𝑓 |
| 41 |
|
dff1o2 |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ↔ ( 𝑓 Fn suc 𝑣 ∧ Fun ◡ 𝑓 ∧ ran 𝑓 = 𝑥 ) ) |
| 42 |
41
|
simp3bi |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ran 𝑓 = 𝑥 ) |
| 43 |
40 42
|
sseqtrid |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( 𝑓 “ 𝑣 ) ⊆ 𝑥 ) |
| 44 |
|
sstr2 |
⊢ ( ( 𝑓 “ 𝑣 ) ⊆ 𝑥 → ( 𝑥 ⊆ 𝐴 → ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ) ) |
| 45 |
43 44
|
syl |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( 𝑥 ⊆ 𝐴 → ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ) ) |
| 46 |
45
|
anim1d |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ( 𝑥 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) → ( ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ) ) |
| 47 |
|
f1of1 |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → 𝑓 : suc 𝑣 –1-1→ 𝑥 ) |
| 48 |
|
vex |
⊢ 𝑥 ∈ V |
| 49 |
|
sssucid |
⊢ 𝑣 ⊆ suc 𝑣 |
| 50 |
|
f1imaen2g |
⊢ ( ( ( 𝑓 : suc 𝑣 –1-1→ 𝑥 ∧ 𝑥 ∈ V ) ∧ ( 𝑣 ⊆ suc 𝑣 ∧ 𝑣 ∈ V ) ) → ( 𝑓 “ 𝑣 ) ≈ 𝑣 ) |
| 51 |
49 33 50
|
mpanr12 |
⊢ ( ( 𝑓 : suc 𝑣 –1-1→ 𝑥 ∧ 𝑥 ∈ V ) → ( 𝑓 “ 𝑣 ) ≈ 𝑣 ) |
| 52 |
47 48 51
|
sylancl |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( 𝑓 “ 𝑣 ) ≈ 𝑣 ) |
| 53 |
52
|
ensymd |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → 𝑣 ≈ ( 𝑓 “ 𝑣 ) ) |
| 54 |
46 53
|
jctird |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ( 𝑥 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) → ( ( ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ∧ 𝑣 ≈ ( 𝑓 “ 𝑣 ) ) ) ) |
| 55 |
|
vex |
⊢ 𝑓 ∈ V |
| 56 |
55
|
imaex |
⊢ ( 𝑓 “ 𝑣 ) ∈ V |
| 57 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ) ) |
| 58 |
|
neeq1 |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( 𝑥 ≠ ∅ ↔ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ) |
| 59 |
57 58
|
anbi12d |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ↔ ( ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ) ) |
| 60 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( 𝑣 ≈ 𝑥 ↔ 𝑣 ≈ ( 𝑓 “ 𝑣 ) ) ) |
| 61 |
59 60
|
anbi12d |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) ↔ ( ( ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ∧ 𝑣 ≈ ( 𝑓 “ 𝑣 ) ) ) ) |
| 62 |
|
inteq |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ∩ 𝑥 = ∩ ( 𝑓 “ 𝑣 ) ) |
| 63 |
62
|
eleq1d |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( ∩ 𝑥 ∈ 𝐴 ↔ ∩ ( 𝑓 “ 𝑣 ) ∈ 𝐴 ) ) |
| 64 |
61 63
|
imbi12d |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ( ( ( ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ∧ 𝑣 ≈ ( 𝑓 “ 𝑣 ) ) → ∩ ( 𝑓 “ 𝑣 ) ∈ 𝐴 ) ) ) |
| 65 |
56 64
|
spcv |
⊢ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ∧ 𝑣 ≈ ( 𝑓 “ 𝑣 ) ) → ∩ ( 𝑓 “ 𝑣 ) ∈ 𝐴 ) ) |
| 66 |
54 65
|
sylan9 |
⊢ ( ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ∧ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) → ∩ ( 𝑓 “ 𝑣 ) ∈ 𝐴 ) ) |
| 67 |
|
ineq1 |
⊢ ( 𝑧 = ∩ ( 𝑓 “ 𝑣 ) → ( 𝑧 ∩ 𝑤 ) = ( ∩ ( 𝑓 “ 𝑣 ) ∩ 𝑤 ) ) |
| 68 |
67
|
eleq1d |
⊢ ( 𝑧 = ∩ ( 𝑓 “ 𝑣 ) → ( ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ( ∩ ( 𝑓 “ 𝑣 ) ∩ 𝑤 ) ∈ 𝐴 ) ) |
| 69 |
|
ineq2 |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑣 ) → ( ∩ ( 𝑓 “ 𝑣 ) ∩ 𝑤 ) = ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ) |
| 70 |
69
|
eleq1d |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑣 ) → ( ( ∩ ( 𝑓 “ 𝑣 ) ∩ 𝑤 ) ∈ 𝐴 ↔ ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) |
| 71 |
68 70
|
rspc2v |
⊢ ( ( ∩ ( 𝑓 “ 𝑣 ) ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) |
| 72 |
71
|
ex |
⊢ ( ∩ ( 𝑓 “ 𝑣 ) ∈ 𝐴 → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) |
| 73 |
66 72
|
syl6 |
⊢ ( ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ∧ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) ) |
| 74 |
73
|
com4r |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ∧ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) ) |
| 75 |
74
|
exp5c |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( 𝑥 ⊆ 𝐴 → ( ( 𝑓 “ 𝑣 ) ≠ ∅ → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) ) ) ) |
| 76 |
75
|
com14 |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ( 𝑓 “ 𝑣 ) ≠ ∅ → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) ) ) ) |
| 77 |
76
|
imp43 |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ( ( 𝑓 “ 𝑣 ) ≠ ∅ → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) |
| 78 |
39 77
|
biimtrrid |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ( ¬ ( 𝑓 “ 𝑣 ) = ∅ → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) |
| 79 |
|
inteq |
⊢ ( ( 𝑓 “ 𝑣 ) = ∅ → ∩ ( 𝑓 “ 𝑣 ) = ∩ ∅ ) |
| 80 |
|
int0 |
⊢ ∩ ∅ = V |
| 81 |
79 80
|
eqtrdi |
⊢ ( ( 𝑓 “ 𝑣 ) = ∅ → ∩ ( 𝑓 “ 𝑣 ) = V ) |
| 82 |
81
|
ineq1d |
⊢ ( ( 𝑓 “ 𝑣 ) = ∅ → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) = ( V ∩ ( 𝑓 ‘ 𝑣 ) ) ) |
| 83 |
|
ssv |
⊢ ( 𝑓 ‘ 𝑣 ) ⊆ V |
| 84 |
|
sseqin2 |
⊢ ( ( 𝑓 ‘ 𝑣 ) ⊆ V ↔ ( V ∩ ( 𝑓 ‘ 𝑣 ) ) = ( 𝑓 ‘ 𝑣 ) ) |
| 85 |
83 84
|
mpbi |
⊢ ( V ∩ ( 𝑓 ‘ 𝑣 ) ) = ( 𝑓 ‘ 𝑣 ) |
| 86 |
82 85
|
eqtrdi |
⊢ ( ( 𝑓 “ 𝑣 ) = ∅ → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) = ( 𝑓 ‘ 𝑣 ) ) |
| 87 |
86
|
eleq1d |
⊢ ( ( 𝑓 “ 𝑣 ) = ∅ → ( ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ↔ ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 ) ) |
| 88 |
87
|
biimprd |
⊢ ( ( 𝑓 “ 𝑣 ) = ∅ → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) |
| 89 |
78 88
|
pm2.61d2 |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) |
| 90 |
38 89
|
mpd |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) |
| 91 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑣 ) ∈ V |
| 92 |
91
|
intunsn |
⊢ ∩ ( ( 𝑓 “ 𝑣 ) ∪ { ( 𝑓 ‘ 𝑣 ) } ) = ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) |
| 93 |
|
f1ofn |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → 𝑓 Fn suc 𝑣 ) |
| 94 |
|
fnsnfv |
⊢ ( ( 𝑓 Fn suc 𝑣 ∧ 𝑣 ∈ suc 𝑣 ) → { ( 𝑓 ‘ 𝑣 ) } = ( 𝑓 “ { 𝑣 } ) ) |
| 95 |
93 34 94
|
sylancl |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → { ( 𝑓 ‘ 𝑣 ) } = ( 𝑓 “ { 𝑣 } ) ) |
| 96 |
95
|
uneq2d |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ( 𝑓 “ 𝑣 ) ∪ { ( 𝑓 ‘ 𝑣 ) } ) = ( ( 𝑓 “ 𝑣 ) ∪ ( 𝑓 “ { 𝑣 } ) ) ) |
| 97 |
|
df-suc |
⊢ suc 𝑣 = ( 𝑣 ∪ { 𝑣 } ) |
| 98 |
97
|
imaeq2i |
⊢ ( 𝑓 “ suc 𝑣 ) = ( 𝑓 “ ( 𝑣 ∪ { 𝑣 } ) ) |
| 99 |
|
imaundi |
⊢ ( 𝑓 “ ( 𝑣 ∪ { 𝑣 } ) ) = ( ( 𝑓 “ 𝑣 ) ∪ ( 𝑓 “ { 𝑣 } ) ) |
| 100 |
98 99
|
eqtr2i |
⊢ ( ( 𝑓 “ 𝑣 ) ∪ ( 𝑓 “ { 𝑣 } ) ) = ( 𝑓 “ suc 𝑣 ) |
| 101 |
96 100
|
eqtrdi |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ( 𝑓 “ 𝑣 ) ∪ { ( 𝑓 ‘ 𝑣 ) } ) = ( 𝑓 “ suc 𝑣 ) ) |
| 102 |
|
f1ofo |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → 𝑓 : suc 𝑣 –onto→ 𝑥 ) |
| 103 |
|
foima |
⊢ ( 𝑓 : suc 𝑣 –onto→ 𝑥 → ( 𝑓 “ suc 𝑣 ) = 𝑥 ) |
| 104 |
102 103
|
syl |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( 𝑓 “ suc 𝑣 ) = 𝑥 ) |
| 105 |
101 104
|
eqtrd |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ( 𝑓 “ 𝑣 ) ∪ { ( 𝑓 ‘ 𝑣 ) } ) = 𝑥 ) |
| 106 |
105
|
inteqd |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ∩ ( ( 𝑓 “ 𝑣 ) ∪ { ( 𝑓 ‘ 𝑣 ) } ) = ∩ 𝑥 ) |
| 107 |
92 106
|
eqtr3id |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) = ∩ 𝑥 ) |
| 108 |
107
|
eleq1d |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ↔ ∩ 𝑥 ∈ 𝐴 ) ) |
| 109 |
108
|
ad2antlr |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ( ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ↔ ∩ 𝑥 ∈ 𝐴 ) ) |
| 110 |
90 109
|
mpbid |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ∩ 𝑥 ∈ 𝐴 ) |
| 111 |
110
|
exp43 |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
| 112 |
111
|
exlimdv |
⊢ ( 𝑥 ⊆ 𝐴 → ( ∃ 𝑓 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
| 113 |
30 112
|
biimtrid |
⊢ ( 𝑥 ⊆ 𝐴 → ( suc 𝑣 ≈ 𝑥 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
| 114 |
113
|
imp |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ suc 𝑣 ≈ 𝑥 ) → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 115 |
114
|
adantlr |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 116 |
115
|
com13 |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 117 |
28 29 116
|
alrimd |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 118 |
117
|
a1i |
⊢ ( 𝑣 ∈ ω → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
| 119 |
6 10 14 27 118
|
finds2 |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 120 |
|
sp |
⊢ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) |
| 121 |
119 120
|
syl6 |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 122 |
121
|
exp4a |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( 𝑦 ≈ 𝑥 → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
| 123 |
122
|
com24 |
⊢ ( 𝑦 ∈ ω → ( 𝑦 ≈ 𝑥 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
| 124 |
2 123
|
syl5 |
⊢ ( 𝑦 ∈ ω → ( 𝑥 ≈ 𝑦 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
| 125 |
124
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ω 𝑥 ≈ 𝑦 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 126 |
1 125
|
sylbi |
⊢ ( 𝑥 ∈ Fin → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 127 |
126
|
com13 |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( 𝑥 ∈ Fin → ∩ 𝑥 ∈ 𝐴 ) ) ) |
| 128 |
127
|
impd |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ) |
| 129 |
128
|
alrimiv |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ) |
| 130 |
|
zfpair2 |
⊢ { 𝑧 , 𝑤 } ∈ V |
| 131 |
|
sseq1 |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( 𝑥 ⊆ 𝐴 ↔ { 𝑧 , 𝑤 } ⊆ 𝐴 ) ) |
| 132 |
|
neeq1 |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( 𝑥 ≠ ∅ ↔ { 𝑧 , 𝑤 } ≠ ∅ ) ) |
| 133 |
131 132
|
anbi12d |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ↔ ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ) ) |
| 134 |
|
eleq1 |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( 𝑥 ∈ Fin ↔ { 𝑧 , 𝑤 } ∈ Fin ) ) |
| 135 |
133 134
|
anbi12d |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) ↔ ( ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ∧ { 𝑧 , 𝑤 } ∈ Fin ) ) ) |
| 136 |
|
inteq |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ∩ 𝑥 = ∩ { 𝑧 , 𝑤 } ) |
| 137 |
136
|
eleq1d |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( ∩ 𝑥 ∈ 𝐴 ↔ ∩ { 𝑧 , 𝑤 } ∈ 𝐴 ) ) |
| 138 |
135 137
|
imbi12d |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ( ( ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ∧ { 𝑧 , 𝑤 } ∈ Fin ) → ∩ { 𝑧 , 𝑤 } ∈ 𝐴 ) ) ) |
| 139 |
130 138
|
spcv |
⊢ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) → ( ( ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ∧ { 𝑧 , 𝑤 } ∈ Fin ) → ∩ { 𝑧 , 𝑤 } ∈ 𝐴 ) ) |
| 140 |
|
vex |
⊢ 𝑧 ∈ V |
| 141 |
|
vex |
⊢ 𝑤 ∈ V |
| 142 |
140 141
|
prss |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ↔ { 𝑧 , 𝑤 } ⊆ 𝐴 ) |
| 143 |
140
|
prnz |
⊢ { 𝑧 , 𝑤 } ≠ ∅ |
| 144 |
143
|
biantru |
⊢ ( { 𝑧 , 𝑤 } ⊆ 𝐴 ↔ ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ) |
| 145 |
|
prfi |
⊢ { 𝑧 , 𝑤 } ∈ Fin |
| 146 |
145
|
biantru |
⊢ ( ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ↔ ( ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ∧ { 𝑧 , 𝑤 } ∈ Fin ) ) |
| 147 |
142 144 146
|
3bitrri |
⊢ ( ( ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ∧ { 𝑧 , 𝑤 } ∈ Fin ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) |
| 148 |
140 141
|
intpr |
⊢ ∩ { 𝑧 , 𝑤 } = ( 𝑧 ∩ 𝑤 ) |
| 149 |
148
|
eleq1i |
⊢ ( ∩ { 𝑧 , 𝑤 } ∈ 𝐴 ↔ ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
| 150 |
139 147 149
|
3imtr3g |
⊢ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) |
| 151 |
150
|
ralrimivv |
⊢ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
| 152 |
129 151
|
impbii |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ) |
| 153 |
|
ineq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∩ 𝑦 ) = ( 𝑧 ∩ 𝑦 ) ) |
| 154 |
153
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ↔ ( 𝑧 ∩ 𝑦 ) ∈ 𝐴 ) ) |
| 155 |
|
ineq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 ∩ 𝑦 ) = ( 𝑧 ∩ 𝑤 ) ) |
| 156 |
155
|
eleq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ∩ 𝑦 ) ∈ 𝐴 ↔ ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) |
| 157 |
154 156
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
| 158 |
|
df-3an |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) ) |
| 159 |
158
|
imbi1i |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ) |
| 160 |
159
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ) |
| 161 |
152 157 160
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ) |