Metamath Proof Explorer


Theorem filconn

Description: A filter gives rise to a connected topology. (Contributed by Jeff Hankins, 6-Dec-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion filconn ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ { ∅ } ) ∈ Conn )

Proof

Step Hyp Ref Expression
1 id ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
2 filunibas ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 = 𝑋 )
3 2 fveq2d ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( Fil ‘ 𝐹 ) = ( Fil ‘ 𝑋 ) )
4 1 3 eleqtrrd ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝐹 ) )
5 nss ( ¬ 𝑥 ⊆ { ∅ } ↔ ∃ 𝑦 ( 𝑦𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) )
6 simpll ( ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → 𝐹 ∈ ( Fil ‘ 𝐹 ) )
7 ssel2 ( ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ∧ 𝑦𝑥 ) → 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) )
8 7 adantll ( ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ 𝑦𝑥 ) → 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) )
9 elun ( 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ↔ ( 𝑦𝐹𝑦 ∈ { ∅ } ) )
10 8 9 sylib ( ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ 𝑦𝑥 ) → ( 𝑦𝐹𝑦 ∈ { ∅ } ) )
11 10 orcomd ( ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ 𝑦𝑥 ) → ( 𝑦 ∈ { ∅ } ∨ 𝑦𝐹 ) )
12 11 ord ( ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ 𝑦𝑥 ) → ( ¬ 𝑦 ∈ { ∅ } → 𝑦𝐹 ) )
13 12 impr ( ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → 𝑦𝐹 )
14 uniss ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → 𝑥 ( 𝐹 ∪ { ∅ } ) )
15 14 ad2antlr ( ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → 𝑥 ( 𝐹 ∪ { ∅ } ) )
16 uniun ( 𝐹 ∪ { ∅ } ) = ( 𝐹 { ∅ } )
17 0ex ∅ ∈ V
18 17 unisn { ∅ } = ∅
19 18 uneq2i ( 𝐹 { ∅ } ) = ( 𝐹 ∪ ∅ )
20 un0 ( 𝐹 ∪ ∅ ) = 𝐹
21 16 19 20 3eqtrri 𝐹 = ( 𝐹 ∪ { ∅ } )
22 15 21 sseqtrrdi ( ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → 𝑥 𝐹 )
23 elssuni ( 𝑦𝑥𝑦 𝑥 )
24 23 ad2antrl ( ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → 𝑦 𝑥 )
25 filss ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ ( 𝑦𝐹 𝑥 𝐹𝑦 𝑥 ) ) → 𝑥𝐹 )
26 6 13 22 24 25 syl13anc ( ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → 𝑥𝐹 )
27 elun1 ( 𝑥𝐹 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) )
28 26 27 syl ( ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) )
29 28 ex ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) → ( ( 𝑦𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) → 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) )
30 29 exlimdv ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) → ( ∃ 𝑦 ( 𝑦𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) → 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) )
31 5 30 syl5bi ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) → ( ¬ 𝑥 ⊆ { ∅ } → 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) )
32 uni0b ( 𝑥 = ∅ ↔ 𝑥 ⊆ { ∅ } )
33 ssun2 { ∅ } ⊆ ( 𝐹 ∪ { ∅ } )
34 17 snid ∅ ∈ { ∅ }
35 33 34 sselii ∅ ∈ ( 𝐹 ∪ { ∅ } )
36 eleq1 ( 𝑥 = ∅ → ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ↔ ∅ ∈ ( 𝐹 ∪ { ∅ } ) ) )
37 35 36 mpbiri ( 𝑥 = ∅ → 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) )
38 32 37 sylbir ( 𝑥 ⊆ { ∅ } → 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) )
39 31 38 pm2.61d2 ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) → 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) )
40 39 ex ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) )
41 40 alrimiv ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ∀ 𝑥 ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) )
42 filin ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥𝐹𝑦𝐹 ) → ( 𝑥𝑦 ) ∈ 𝐹 )
43 elun1 ( ( 𝑥𝑦 ) ∈ 𝐹 → ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
44 42 43 syl ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥𝐹𝑦𝐹 ) → ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
45 44 3expa ( ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥𝐹 ) ∧ 𝑦𝐹 ) → ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
46 45 ralrimiva ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥𝐹 ) → ∀ 𝑦𝐹 ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
47 elsni ( 𝑦 ∈ { ∅ } → 𝑦 = ∅ )
48 ineq2 ( 𝑦 = ∅ → ( 𝑥𝑦 ) = ( 𝑥 ∩ ∅ ) )
49 in0 ( 𝑥 ∩ ∅ ) = ∅
50 48 49 eqtrdi ( 𝑦 = ∅ → ( 𝑥𝑦 ) = ∅ )
51 50 35 eqeltrdi ( 𝑦 = ∅ → ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
52 47 51 syl ( 𝑦 ∈ { ∅ } → ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
53 52 rgen 𝑦 ∈ { ∅ } ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } )
54 ralun ( ( ∀ 𝑦𝐹 ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ∧ ∀ 𝑦 ∈ { ∅ } ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) → ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
55 46 53 54 sylancl ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥𝐹 ) → ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
56 55 ralrimiva ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ∀ 𝑥𝐹𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
57 elsni ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ )
58 ineq1 ( 𝑥 = ∅ → ( 𝑥𝑦 ) = ( ∅ ∩ 𝑦 ) )
59 0in ( ∅ ∩ 𝑦 ) = ∅
60 58 59 eqtrdi ( 𝑥 = ∅ → ( 𝑥𝑦 ) = ∅ )
61 60 35 eqeltrdi ( 𝑥 = ∅ → ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
62 61 ralrimivw ( 𝑥 = ∅ → ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
63 57 62 syl ( 𝑥 ∈ { ∅ } → ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
64 63 rgen 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } )
65 ralun ( ( ∀ 𝑥𝐹𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ∧ ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) → ∀ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
66 56 64 65 sylancl ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ∀ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) )
67 p0ex { ∅ } ∈ V
68 unexg ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ { ∅ } ∈ V ) → ( 𝐹 ∪ { ∅ } ) ∈ V )
69 67 68 mpan2 ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ( 𝐹 ∪ { ∅ } ) ∈ V )
70 istopg ( ( 𝐹 ∪ { ∅ } ) ∈ V → ( ( 𝐹 ∪ { ∅ } ) ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) ) )
71 69 70 syl ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ( ( 𝐹 ∪ { ∅ } ) ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) ) )
72 41 66 71 mpbir2and ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ( 𝐹 ∪ { ∅ } ) ∈ Top )
73 21 cldopn ( 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) → ( 𝐹𝑥 ) ∈ ( 𝐹 ∪ { ∅ } ) )
74 elun ( ( 𝐹𝑥 ) ∈ ( 𝐹 ∪ { ∅ } ) ↔ ( ( 𝐹𝑥 ) ∈ 𝐹 ∨ ( 𝐹𝑥 ) ∈ { ∅ } ) )
75 73 74 sylib ( 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) → ( ( 𝐹𝑥 ) ∈ 𝐹 ∨ ( 𝐹𝑥 ) ∈ { ∅ } ) )
76 elun ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ↔ ( 𝑥𝐹𝑥 ∈ { ∅ } ) )
77 filfbas ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → 𝐹 ∈ ( fBas ‘ 𝐹 ) )
78 fbncp ( ( 𝐹 ∈ ( fBas ‘ 𝐹 ) ∧ 𝑥𝐹 ) → ¬ ( 𝐹𝑥 ) ∈ 𝐹 )
79 77 78 sylan ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥𝐹 ) → ¬ ( 𝐹𝑥 ) ∈ 𝐹 )
80 79 pm2.21d ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥𝐹 ) → ( ( 𝐹𝑥 ) ∈ 𝐹𝑥 = ∅ ) )
81 80 ex ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ( 𝑥𝐹 → ( ( 𝐹𝑥 ) ∈ 𝐹𝑥 = ∅ ) ) )
82 57 a1i13 ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ( 𝑥 ∈ { ∅ } → ( ( 𝐹𝑥 ) ∈ 𝐹𝑥 = ∅ ) ) )
83 81 82 jaod ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ( ( 𝑥𝐹𝑥 ∈ { ∅ } ) → ( ( 𝐹𝑥 ) ∈ 𝐹𝑥 = ∅ ) ) )
84 76 83 syl5bi ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) → ( ( 𝐹𝑥 ) ∈ 𝐹𝑥 = ∅ ) ) )
85 84 imp ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( ( 𝐹𝑥 ) ∈ 𝐹𝑥 = ∅ ) )
86 elsni ( ( 𝐹𝑥 ) ∈ { ∅ } → ( 𝐹𝑥 ) = ∅ )
87 elssuni ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) → 𝑥 ( 𝐹 ∪ { ∅ } ) )
88 87 21 sseqtrrdi ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) → 𝑥 𝐹 )
89 88 adantl ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → 𝑥 𝐹 )
90 ssdif0 ( 𝐹𝑥 ↔ ( 𝐹𝑥 ) = ∅ )
91 90 biimpri ( ( 𝐹𝑥 ) = ∅ → 𝐹𝑥 )
92 eqss ( 𝑥 = 𝐹 ↔ ( 𝑥 𝐹 𝐹𝑥 ) )
93 92 simplbi2 ( 𝑥 𝐹 → ( 𝐹𝑥𝑥 = 𝐹 ) )
94 89 91 93 syl2im ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( ( 𝐹𝑥 ) = ∅ → 𝑥 = 𝐹 ) )
95 86 94 syl5 ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( ( 𝐹𝑥 ) ∈ { ∅ } → 𝑥 = 𝐹 ) )
96 85 95 orim12d ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( ( ( 𝐹𝑥 ) ∈ 𝐹 ∨ ( 𝐹𝑥 ) ∈ { ∅ } ) → ( 𝑥 = ∅ ∨ 𝑥 = 𝐹 ) ) )
97 75 96 syl5 ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) → ( 𝑥 = ∅ ∨ 𝑥 = 𝐹 ) ) )
98 97 expimpd ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ( ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∧ 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) → ( 𝑥 = ∅ ∨ 𝑥 = 𝐹 ) ) )
99 elin ( 𝑥 ∈ ( ( 𝐹 ∪ { ∅ } ) ∩ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) ↔ ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∧ 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) )
100 vex 𝑥 ∈ V
101 100 elpr ( 𝑥 ∈ { ∅ , 𝐹 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = 𝐹 ) )
102 98 99 101 3imtr4g ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ( 𝑥 ∈ ( ( 𝐹 ∪ { ∅ } ) ∩ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) → 𝑥 ∈ { ∅ , 𝐹 } ) )
103 102 ssrdv ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ( ( 𝐹 ∪ { ∅ } ) ∩ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) ⊆ { ∅ , 𝐹 } )
104 21 isconn2 ( ( 𝐹 ∪ { ∅ } ) ∈ Conn ↔ ( ( 𝐹 ∪ { ∅ } ) ∈ Top ∧ ( ( 𝐹 ∪ { ∅ } ) ∩ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) ⊆ { ∅ , 𝐹 } ) )
105 72 103 104 sylanbrc ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → ( 𝐹 ∪ { ∅ } ) ∈ Conn )
106 4 105 syl ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ { ∅ } ) ∈ Conn )