| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 2 |  | filunibas | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ∪  𝐹  =  𝑋 ) | 
						
							| 3 | 2 | fveq2d | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( Fil ‘ ∪  𝐹 )  =  ( Fil ‘ 𝑋 ) ) | 
						
							| 4 | 1 3 | eleqtrrd | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ∈  ( Fil ‘ ∪  𝐹 ) ) | 
						
							| 5 |  | nss | ⊢ ( ¬  𝑥  ⊆  { ∅ }  ↔  ∃ 𝑦 ( 𝑦  ∈  𝑥  ∧  ¬  𝑦  ∈  { ∅ } ) ) | 
						
							| 6 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  ∧  ( 𝑦  ∈  𝑥  ∧  ¬  𝑦  ∈  { ∅ } ) )  →  𝐹  ∈  ( Fil ‘ ∪  𝐹 ) ) | 
						
							| 7 |  | ssel2 | ⊢ ( ( 𝑥  ⊆  ( 𝐹  ∪  { ∅ } )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 8 | 7 | adantll | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 9 |  | elun | ⊢ ( 𝑦  ∈  ( 𝐹  ∪  { ∅ } )  ↔  ( 𝑦  ∈  𝐹  ∨  𝑦  ∈  { ∅ } ) ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝑦  ∈  𝐹  ∨  𝑦  ∈  { ∅ } ) ) | 
						
							| 11 | 10 | orcomd | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝑦  ∈  { ∅ }  ∨  𝑦  ∈  𝐹 ) ) | 
						
							| 12 | 11 | ord | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  ∧  𝑦  ∈  𝑥 )  →  ( ¬  𝑦  ∈  { ∅ }  →  𝑦  ∈  𝐹 ) ) | 
						
							| 13 | 12 | impr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  ∧  ( 𝑦  ∈  𝑥  ∧  ¬  𝑦  ∈  { ∅ } ) )  →  𝑦  ∈  𝐹 ) | 
						
							| 14 |  | uniss | ⊢ ( 𝑥  ⊆  ( 𝐹  ∪  { ∅ } )  →  ∪  𝑥  ⊆  ∪  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  ∧  ( 𝑦  ∈  𝑥  ∧  ¬  𝑦  ∈  { ∅ } ) )  →  ∪  𝑥  ⊆  ∪  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 16 |  | uniun | ⊢ ∪  ( 𝐹  ∪  { ∅ } )  =  ( ∪  𝐹  ∪  ∪  { ∅ } ) | 
						
							| 17 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 18 | 17 | unisn | ⊢ ∪  { ∅ }  =  ∅ | 
						
							| 19 | 18 | uneq2i | ⊢ ( ∪  𝐹  ∪  ∪  { ∅ } )  =  ( ∪  𝐹  ∪  ∅ ) | 
						
							| 20 |  | un0 | ⊢ ( ∪  𝐹  ∪  ∅ )  =  ∪  𝐹 | 
						
							| 21 | 16 19 20 | 3eqtrri | ⊢ ∪  𝐹  =  ∪  ( 𝐹  ∪  { ∅ } ) | 
						
							| 22 | 15 21 | sseqtrrdi | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  ∧  ( 𝑦  ∈  𝑥  ∧  ¬  𝑦  ∈  { ∅ } ) )  →  ∪  𝑥  ⊆  ∪  𝐹 ) | 
						
							| 23 |  | elssuni | ⊢ ( 𝑦  ∈  𝑥  →  𝑦  ⊆  ∪  𝑥 ) | 
						
							| 24 | 23 | ad2antrl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  ∧  ( 𝑦  ∈  𝑥  ∧  ¬  𝑦  ∈  { ∅ } ) )  →  𝑦  ⊆  ∪  𝑥 ) | 
						
							| 25 |  | filss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  ( 𝑦  ∈  𝐹  ∧  ∪  𝑥  ⊆  ∪  𝐹  ∧  𝑦  ⊆  ∪  𝑥 ) )  →  ∪  𝑥  ∈  𝐹 ) | 
						
							| 26 | 6 13 22 24 25 | syl13anc | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  ∧  ( 𝑦  ∈  𝑥  ∧  ¬  𝑦  ∈  { ∅ } ) )  →  ∪  𝑥  ∈  𝐹 ) | 
						
							| 27 |  | elun1 | ⊢ ( ∪  𝑥  ∈  𝐹  →  ∪  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  ∧  ( 𝑦  ∈  𝑥  ∧  ¬  𝑦  ∈  { ∅ } ) )  →  ∪  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 29 | 28 | ex | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  →  ( ( 𝑦  ∈  𝑥  ∧  ¬  𝑦  ∈  { ∅ } )  →  ∪  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ) ) | 
						
							| 30 | 29 | exlimdv | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  →  ( ∃ 𝑦 ( 𝑦  ∈  𝑥  ∧  ¬  𝑦  ∈  { ∅ } )  →  ∪  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ) ) | 
						
							| 31 | 5 30 | biimtrid | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  →  ( ¬  𝑥  ⊆  { ∅ }  →  ∪  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ) ) | 
						
							| 32 |  | uni0b | ⊢ ( ∪  𝑥  =  ∅  ↔  𝑥  ⊆  { ∅ } ) | 
						
							| 33 |  | ssun2 | ⊢ { ∅ }  ⊆  ( 𝐹  ∪  { ∅ } ) | 
						
							| 34 | 17 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 35 | 33 34 | sselii | ⊢ ∅  ∈  ( 𝐹  ∪  { ∅ } ) | 
						
							| 36 |  | eleq1 | ⊢ ( ∪  𝑥  =  ∅  →  ( ∪  𝑥  ∈  ( 𝐹  ∪  { ∅ } )  ↔  ∅  ∈  ( 𝐹  ∪  { ∅ } ) ) ) | 
						
							| 37 | 35 36 | mpbiri | ⊢ ( ∪  𝑥  =  ∅  →  ∪  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 38 | 32 37 | sylbir | ⊢ ( 𝑥  ⊆  { ∅ }  →  ∪  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 39 | 31 38 | pm2.61d2 | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ⊆  ( 𝐹  ∪  { ∅ } ) )  →  ∪  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ( 𝑥  ⊆  ( 𝐹  ∪  { ∅ } )  →  ∪  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ) ) | 
						
							| 41 | 40 | alrimiv | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ∀ 𝑥 ( 𝑥  ⊆  ( 𝐹  ∪  { ∅ } )  →  ∪  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ) ) | 
						
							| 42 |  | filin | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐹 ) | 
						
							| 43 |  | elun1 | ⊢ ( ( 𝑥  ∩  𝑦 )  ∈  𝐹  →  ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 )  →  ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 45 | 44 | 3expa | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ∈  𝐹 )  ∧  𝑦  ∈  𝐹 )  →  ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 46 | 45 | ralrimiva | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ∈  𝐹 )  →  ∀ 𝑦  ∈  𝐹 ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 47 |  | elsni | ⊢ ( 𝑦  ∈  { ∅ }  →  𝑦  =  ∅ ) | 
						
							| 48 |  | ineq2 | ⊢ ( 𝑦  =  ∅  →  ( 𝑥  ∩  𝑦 )  =  ( 𝑥  ∩  ∅ ) ) | 
						
							| 49 |  | in0 | ⊢ ( 𝑥  ∩  ∅ )  =  ∅ | 
						
							| 50 | 48 49 | eqtrdi | ⊢ ( 𝑦  =  ∅  →  ( 𝑥  ∩  𝑦 )  =  ∅ ) | 
						
							| 51 | 50 35 | eqeltrdi | ⊢ ( 𝑦  =  ∅  →  ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 52 | 47 51 | syl | ⊢ ( 𝑦  ∈  { ∅ }  →  ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 53 | 52 | rgen | ⊢ ∀ 𝑦  ∈  { ∅ } ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) | 
						
							| 54 |  | ralun | ⊢ ( ( ∀ 𝑦  ∈  𝐹 ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } )  ∧  ∀ 𝑦  ∈  { ∅ } ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) )  →  ∀ 𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 55 | 46 53 54 | sylancl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ∈  𝐹 )  →  ∀ 𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 56 | 55 | ralrimiva | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ∀ 𝑥  ∈  𝐹 ∀ 𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 57 |  | elsni | ⊢ ( 𝑥  ∈  { ∅ }  →  𝑥  =  ∅ ) | 
						
							| 58 |  | ineq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  ∩  𝑦 )  =  ( ∅  ∩  𝑦 ) ) | 
						
							| 59 |  | 0in | ⊢ ( ∅  ∩  𝑦 )  =  ∅ | 
						
							| 60 | 58 59 | eqtrdi | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  ∩  𝑦 )  =  ∅ ) | 
						
							| 61 | 60 35 | eqeltrdi | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 62 | 61 | ralrimivw | ⊢ ( 𝑥  =  ∅  →  ∀ 𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 63 | 57 62 | syl | ⊢ ( 𝑥  ∈  { ∅ }  →  ∀ 𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 64 | 63 | rgen | ⊢ ∀ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) | 
						
							| 65 |  | ralun | ⊢ ( ( ∀ 𝑥  ∈  𝐹 ∀ 𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } )  ∧  ∀ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) )  →  ∀ 𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ∀ 𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 66 | 56 64 65 | sylancl | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ∀ 𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ∀ 𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 67 |  | p0ex | ⊢ { ∅ }  ∈  V | 
						
							| 68 |  | unexg | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  { ∅ }  ∈  V )  →  ( 𝐹  ∪  { ∅ } )  ∈  V ) | 
						
							| 69 | 67 68 | mpan2 | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ( 𝐹  ∪  { ∅ } )  ∈  V ) | 
						
							| 70 |  | istopg | ⊢ ( ( 𝐹  ∪  { ∅ } )  ∈  V  →  ( ( 𝐹  ∪  { ∅ } )  ∈  Top  ↔  ( ∀ 𝑥 ( 𝑥  ⊆  ( 𝐹  ∪  { ∅ } )  →  ∪  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) )  ∧  ∀ 𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ∀ 𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) ) ) | 
						
							| 71 | 69 70 | syl | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ( ( 𝐹  ∪  { ∅ } )  ∈  Top  ↔  ( ∀ 𝑥 ( 𝑥  ⊆  ( 𝐹  ∪  { ∅ } )  →  ∪  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) )  ∧  ∀ 𝑥  ∈  ( 𝐹  ∪  { ∅ } ) ∀ 𝑦  ∈  ( 𝐹  ∪  { ∅ } ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∪  { ∅ } ) ) ) ) | 
						
							| 72 | 41 66 71 | mpbir2and | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ( 𝐹  ∪  { ∅ } )  ∈  Top ) | 
						
							| 73 | 21 | cldopn | ⊢ ( 𝑥  ∈  ( Clsd ‘ ( 𝐹  ∪  { ∅ } ) )  →  ( ∪  𝐹  ∖  𝑥 )  ∈  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 74 |  | elun | ⊢ ( ( ∪  𝐹  ∖  𝑥 )  ∈  ( 𝐹  ∪  { ∅ } )  ↔  ( ( ∪  𝐹  ∖  𝑥 )  ∈  𝐹  ∨  ( ∪  𝐹  ∖  𝑥 )  ∈  { ∅ } ) ) | 
						
							| 75 | 73 74 | sylib | ⊢ ( 𝑥  ∈  ( Clsd ‘ ( 𝐹  ∪  { ∅ } ) )  →  ( ( ∪  𝐹  ∖  𝑥 )  ∈  𝐹  ∨  ( ∪  𝐹  ∖  𝑥 )  ∈  { ∅ } ) ) | 
						
							| 76 |  | elun | ⊢ ( 𝑥  ∈  ( 𝐹  ∪  { ∅ } )  ↔  ( 𝑥  ∈  𝐹  ∨  𝑥  ∈  { ∅ } ) ) | 
						
							| 77 |  | filfbas | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  𝐹  ∈  ( fBas ‘ ∪  𝐹 ) ) | 
						
							| 78 |  | fbncp | ⊢ ( ( 𝐹  ∈  ( fBas ‘ ∪  𝐹 )  ∧  𝑥  ∈  𝐹 )  →  ¬  ( ∪  𝐹  ∖  𝑥 )  ∈  𝐹 ) | 
						
							| 79 | 77 78 | sylan | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ∈  𝐹 )  →  ¬  ( ∪  𝐹  ∖  𝑥 )  ∈  𝐹 ) | 
						
							| 80 | 79 | pm2.21d | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ∈  𝐹 )  →  ( ( ∪  𝐹  ∖  𝑥 )  ∈  𝐹  →  𝑥  =  ∅ ) ) | 
						
							| 81 | 80 | ex | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ( 𝑥  ∈  𝐹  →  ( ( ∪  𝐹  ∖  𝑥 )  ∈  𝐹  →  𝑥  =  ∅ ) ) ) | 
						
							| 82 | 57 | a1i13 | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ( 𝑥  ∈  { ∅ }  →  ( ( ∪  𝐹  ∖  𝑥 )  ∈  𝐹  →  𝑥  =  ∅ ) ) ) | 
						
							| 83 | 81 82 | jaod | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ( ( 𝑥  ∈  𝐹  ∨  𝑥  ∈  { ∅ } )  →  ( ( ∪  𝐹  ∖  𝑥 )  ∈  𝐹  →  𝑥  =  ∅ ) ) ) | 
						
							| 84 | 76 83 | biimtrid | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ( 𝑥  ∈  ( 𝐹  ∪  { ∅ } )  →  ( ( ∪  𝐹  ∖  𝑥 )  ∈  𝐹  →  𝑥  =  ∅ ) ) ) | 
						
							| 85 | 84 | imp | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) )  →  ( ( ∪  𝐹  ∖  𝑥 )  ∈  𝐹  →  𝑥  =  ∅ ) ) | 
						
							| 86 |  | elsni | ⊢ ( ( ∪  𝐹  ∖  𝑥 )  ∈  { ∅ }  →  ( ∪  𝐹  ∖  𝑥 )  =  ∅ ) | 
						
							| 87 |  | elssuni | ⊢ ( 𝑥  ∈  ( 𝐹  ∪  { ∅ } )  →  𝑥  ⊆  ∪  ( 𝐹  ∪  { ∅ } ) ) | 
						
							| 88 | 87 21 | sseqtrrdi | ⊢ ( 𝑥  ∈  ( 𝐹  ∪  { ∅ } )  →  𝑥  ⊆  ∪  𝐹 ) | 
						
							| 89 | 88 | adantl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) )  →  𝑥  ⊆  ∪  𝐹 ) | 
						
							| 90 |  | ssdif0 | ⊢ ( ∪  𝐹  ⊆  𝑥  ↔  ( ∪  𝐹  ∖  𝑥 )  =  ∅ ) | 
						
							| 91 | 90 | biimpri | ⊢ ( ( ∪  𝐹  ∖  𝑥 )  =  ∅  →  ∪  𝐹  ⊆  𝑥 ) | 
						
							| 92 |  | eqss | ⊢ ( 𝑥  =  ∪  𝐹  ↔  ( 𝑥  ⊆  ∪  𝐹  ∧  ∪  𝐹  ⊆  𝑥 ) ) | 
						
							| 93 | 92 | simplbi2 | ⊢ ( 𝑥  ⊆  ∪  𝐹  →  ( ∪  𝐹  ⊆  𝑥  →  𝑥  =  ∪  𝐹 ) ) | 
						
							| 94 | 89 91 93 | syl2im | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) )  →  ( ( ∪  𝐹  ∖  𝑥 )  =  ∅  →  𝑥  =  ∪  𝐹 ) ) | 
						
							| 95 | 86 94 | syl5 | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) )  →  ( ( ∪  𝐹  ∖  𝑥 )  ∈  { ∅ }  →  𝑥  =  ∪  𝐹 ) ) | 
						
							| 96 | 85 95 | orim12d | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) )  →  ( ( ( ∪  𝐹  ∖  𝑥 )  ∈  𝐹  ∨  ( ∪  𝐹  ∖  𝑥 )  ∈  { ∅ } )  →  ( 𝑥  =  ∅  ∨  𝑥  =  ∪  𝐹 ) ) ) | 
						
							| 97 | 75 96 | syl5 | ⊢ ( ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  ∧  𝑥  ∈  ( 𝐹  ∪  { ∅ } ) )  →  ( 𝑥  ∈  ( Clsd ‘ ( 𝐹  ∪  { ∅ } ) )  →  ( 𝑥  =  ∅  ∨  𝑥  =  ∪  𝐹 ) ) ) | 
						
							| 98 | 97 | expimpd | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ( ( 𝑥  ∈  ( 𝐹  ∪  { ∅ } )  ∧  𝑥  ∈  ( Clsd ‘ ( 𝐹  ∪  { ∅ } ) ) )  →  ( 𝑥  =  ∅  ∨  𝑥  =  ∪  𝐹 ) ) ) | 
						
							| 99 |  | elin | ⊢ ( 𝑥  ∈  ( ( 𝐹  ∪  { ∅ } )  ∩  ( Clsd ‘ ( 𝐹  ∪  { ∅ } ) ) )  ↔  ( 𝑥  ∈  ( 𝐹  ∪  { ∅ } )  ∧  𝑥  ∈  ( Clsd ‘ ( 𝐹  ∪  { ∅ } ) ) ) ) | 
						
							| 100 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 101 | 100 | elpr | ⊢ ( 𝑥  ∈  { ∅ ,  ∪  𝐹 }  ↔  ( 𝑥  =  ∅  ∨  𝑥  =  ∪  𝐹 ) ) | 
						
							| 102 | 98 99 101 | 3imtr4g | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ( 𝑥  ∈  ( ( 𝐹  ∪  { ∅ } )  ∩  ( Clsd ‘ ( 𝐹  ∪  { ∅ } ) ) )  →  𝑥  ∈  { ∅ ,  ∪  𝐹 } ) ) | 
						
							| 103 | 102 | ssrdv | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ( ( 𝐹  ∪  { ∅ } )  ∩  ( Clsd ‘ ( 𝐹  ∪  { ∅ } ) ) )  ⊆  { ∅ ,  ∪  𝐹 } ) | 
						
							| 104 | 21 | isconn2 | ⊢ ( ( 𝐹  ∪  { ∅ } )  ∈  Conn  ↔  ( ( 𝐹  ∪  { ∅ } )  ∈  Top  ∧  ( ( 𝐹  ∪  { ∅ } )  ∩  ( Clsd ‘ ( 𝐹  ∪  { ∅ } ) ) )  ⊆  { ∅ ,  ∪  𝐹 } ) ) | 
						
							| 105 | 72 103 104 | sylanbrc | ⊢ ( 𝐹  ∈  ( Fil ‘ ∪  𝐹 )  →  ( 𝐹  ∪  { ∅ } )  ∈  Conn ) | 
						
							| 106 | 4 105 | syl | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝐹  ∪  { ∅ } )  ∈  Conn ) |