Description: An element of a filter is nonempty. (Contributed by FL, 24-May-2011) (Revised by Mario Carneiro, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fileln0 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐴 ∈ 𝐹 → 𝐴 ∈ 𝐹 ) | |
| 2 | 0nelfil | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) | |
| 3 | nelne2 | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ ¬ ∅ ∈ 𝐹 ) → 𝐴 ≠ ∅ ) | |
| 4 | 1 2 3 | syl2anr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ≠ ∅ ) |