Metamath Proof Explorer


Theorem fileln0

Description: An element of a filter is nonempty. (Contributed by FL, 24-May-2011) (Revised by Mario Carneiro, 28-Jul-2015)

Ref Expression
Assertion fileln0 ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → 𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 id ( 𝐴𝐹𝐴𝐹 )
2 0nelfil ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 )
3 nelne2 ( ( 𝐴𝐹 ∧ ¬ ∅ ∈ 𝐹 ) → 𝐴 ≠ ∅ )
4 1 2 3 syl2anr ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → 𝐴 ≠ ∅ )