Metamath Proof Explorer


Theorem filelss

Description: An element of a filter is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filelss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → 𝐴𝑋 )

Proof

Step Hyp Ref Expression
1 filfbas ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) )
2 fbelss ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴𝐹 ) → 𝐴𝑋 )
3 1 2 sylan ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → 𝐴𝑋 )