Metamath Proof Explorer


Theorem filfbas

Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009) (Revised by Mario Carneiro, 28-Jul-2015)

Ref Expression
Assertion filfbas ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 isfil ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥𝐹 ) ) )
2 1 simplbi ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) )