Metamath Proof Explorer


Theorem filfi

Description: A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filfi ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( fi ‘ 𝐹 ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 filin ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥𝐹𝑦𝐹 ) → ( 𝑥𝑦 ) ∈ 𝐹 )
2 1 3expib ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑥𝐹𝑦𝐹 ) → ( 𝑥𝑦 ) ∈ 𝐹 ) )
3 2 ralrimivv ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 )
4 inficl ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ↔ ( fi ‘ 𝐹 ) = 𝐹 ) )
5 3 4 mpbid ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( fi ‘ 𝐹 ) = 𝐹 )