Description: A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | filfi | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( fi ‘ 𝐹 ) = 𝐹 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filin | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) | |
2 | 1 | 3expib | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) ) |
3 | 2 | ralrimivv | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
4 | inficl | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ↔ ( fi ‘ 𝐹 ) = 𝐹 ) ) | |
5 | 3 4 | mpbid | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( fi ‘ 𝐹 ) = 𝐹 ) |