Metamath Proof Explorer
Description: No filter containing a finite element is free. (Contributed by Jeff
Hankins, 5-Dec-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
|
|
Ref |
Expression |
|
Assertion |
filfinnfr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin ) → ∩ 𝐹 ≠ ∅ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
2 |
|
fbfinnfr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin ) → ∩ 𝐹 ≠ ∅ ) |
3 |
1 2
|
syl3an1 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin ) → ∩ 𝐹 ≠ ∅ ) |