Metamath Proof Explorer


Theorem filin

Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filin ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹𝐵𝐹 ) → ( 𝐴𝐵 ) ∈ 𝐹 )

Proof

Step Hyp Ref Expression
1 filfbas ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) )
2 fbasssin ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴𝐹𝐵𝐹 ) → ∃ 𝑥𝐹 𝑥 ⊆ ( 𝐴𝐵 ) )
3 1 2 syl3an1 ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹𝐵𝐹 ) → ∃ 𝑥𝐹 𝑥 ⊆ ( 𝐴𝐵 ) )
4 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
5 filelss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → 𝐴𝑋 )
6 4 5 sstrid ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( 𝐴𝐵 ) ⊆ 𝑋 )
7 filss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥𝐹 ∧ ( 𝐴𝐵 ) ⊆ 𝑋𝑥 ⊆ ( 𝐴𝐵 ) ) ) → ( 𝐴𝐵 ) ∈ 𝐹 )
8 7 3exp2 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥𝐹 → ( ( 𝐴𝐵 ) ⊆ 𝑋 → ( 𝑥 ⊆ ( 𝐴𝐵 ) → ( 𝐴𝐵 ) ∈ 𝐹 ) ) ) )
9 8 com23 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝐴𝐵 ) ⊆ 𝑋 → ( 𝑥𝐹 → ( 𝑥 ⊆ ( 𝐴𝐵 ) → ( 𝐴𝐵 ) ∈ 𝐹 ) ) ) )
10 9 imp ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐵 ) ⊆ 𝑋 ) → ( 𝑥𝐹 → ( 𝑥 ⊆ ( 𝐴𝐵 ) → ( 𝐴𝐵 ) ∈ 𝐹 ) ) )
11 10 rexlimdv ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐵 ) ⊆ 𝑋 ) → ( ∃ 𝑥𝐹 𝑥 ⊆ ( 𝐴𝐵 ) → ( 𝐴𝐵 ) ∈ 𝐹 ) )
12 6 11 syldan ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → ( ∃ 𝑥𝐹 𝑥 ⊆ ( 𝐴𝐵 ) → ( 𝐴𝐵 ) ∈ 𝐹 ) )
13 12 3adant3 ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹𝐵𝐹 ) → ( ∃ 𝑥𝐹 𝑥 ⊆ ( 𝐴𝐵 ) → ( 𝐴𝐵 ) ∈ 𝐹 ) )
14 3 13 mpd ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹𝐵𝐹 ) → ( 𝐴𝐵 ) ∈ 𝐹 )