| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							filfbas | 
							⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fbasssin | 
							⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝐴  ∈  𝐹  ∧  𝐵  ∈  𝐹 )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝐴  ∩  𝐵 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl3an1 | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  𝐹  ∧  𝐵  ∈  𝐹 )  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝐴  ∩  𝐵 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							inss1 | 
							⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐴  | 
						
						
							| 5 | 
							
								
							 | 
							filelss | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  𝐴  ⊆  𝑋 )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							sstrid | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ( 𝐴  ∩  𝐵 )  ⊆  𝑋 )  | 
						
						
							| 7 | 
							
								
							 | 
							filss | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑥  ∈  𝐹  ∧  ( 𝐴  ∩  𝐵 )  ⊆  𝑋  ∧  𝑥  ⊆  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐹 )  | 
						
						
							| 8 | 
							
								7
							 | 
							3exp2 | 
							⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝑥  ∈  𝐹  →  ( ( 𝐴  ∩  𝐵 )  ⊆  𝑋  →  ( 𝑥  ⊆  ( 𝐴  ∩  𝐵 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐹 ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							com23 | 
							⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ( 𝐴  ∩  𝐵 )  ⊆  𝑋  →  ( 𝑥  ∈  𝐹  →  ( 𝑥  ⊆  ( 𝐴  ∩  𝐵 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐹 ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							imp | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐴  ∩  𝐵 )  ⊆  𝑋 )  →  ( 𝑥  ∈  𝐹  →  ( 𝑥  ⊆  ( 𝐴  ∩  𝐵 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐹 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							rexlimdv | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐴  ∩  𝐵 )  ⊆  𝑋 )  →  ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝐴  ∩  𝐵 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐹 ) )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							syldan | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝐴  ∩  𝐵 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐹 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3adant3 | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  𝐹  ∧  𝐵  ∈  𝐹 )  →  ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  ( 𝐴  ∩  𝐵 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐹 ) )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							mpd | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐴  ∈  𝐹  ∧  𝐵  ∈  𝐹 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐹 )  |