Description: The intersection of two elements of a filter can't be empty. (Contributed by FL, 16-Sep-2007) (Revised by Stefan O'Rear, 28-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | filinn0 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
2 | filin | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) | |
3 | fileln0 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) → ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) | |
4 | 1 2 3 | syl2anc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) |