Metamath Proof Explorer


Theorem filinn0

Description: The intersection of two elements of a filter can't be empty. (Contributed by FL, 16-Sep-2007) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filinn0 ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹𝐵𝐹 ) → ( 𝐴𝐵 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹𝐵𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
2 filin ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹𝐵𝐹 ) → ( 𝐴𝐵 ) ∈ 𝐹 )
3 fileln0 ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐵 ) ∈ 𝐹 ) → ( 𝐴𝐵 ) ≠ ∅ )
4 1 2 3 syl2anc ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹𝐵𝐹 ) → ( 𝐴𝐵 ) ≠ ∅ )