Metamath Proof Explorer


Theorem filintn0

Description: A filter has the finite intersection property. Remark below Definition 1 of BourbakiTop1 p. I.36. (Contributed by FL, 20-Sep-2007) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filintn0 ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 elfir ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐴 ∈ ( fi ‘ 𝐹 ) )
2 filfi ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( fi ‘ 𝐹 ) = 𝐹 )
3 2 adantr ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ( fi ‘ 𝐹 ) = 𝐹 )
4 1 3 eleqtrd ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐴𝐹 )
5 fileln0 ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴𝐹 ) → 𝐴 ≠ ∅ )
6 4 5 syldan ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐴 ≠ ∅ )