Description: A filter has the finite intersection property. Remark below Definition 1 of BourbakiTop1 p. I.36. (Contributed by FL, 20-Sep-2007) (Revised by Stefan O'Rear, 28-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | filintn0 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝐹 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ 𝐴 ≠ ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfir | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝐹 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ 𝐴 ∈ ( fi ‘ 𝐹 ) ) | |
2 | filfi | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( fi ‘ 𝐹 ) = 𝐹 ) | |
3 | 2 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝐹 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ( fi ‘ 𝐹 ) = 𝐹 ) |
4 | 1 3 | eleqtrd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝐹 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ 𝐴 ∈ 𝐹 ) |
5 | fileln0 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∩ 𝐴 ∈ 𝐹 ) → ∩ 𝐴 ≠ ∅ ) | |
6 | 4 5 | syldan | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝐹 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ 𝐴 ≠ ∅ ) |