| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isfil | 
							⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ↔  ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝐹  ∩  𝒫  𝑥 )  ≠  ∅  →  𝑥  ∈  𝐹 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							simprbi | 
							⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝐹  ∩  𝒫  𝑥 )  ≠  ∅  →  𝑥  ∈  𝐹 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝐹  ∧  𝐵  ⊆  𝑋  ∧  𝐴  ⊆  𝐵 ) )  →  ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝐹  ∩  𝒫  𝑥 )  ≠  ∅  →  𝑥  ∈  𝐹 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							elfvdm | 
							⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  dom  Fil )  | 
						
						
							| 5 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐴  ∈  𝐹  ∧  𝐵  ⊆  𝑋  ∧  𝐴  ⊆  𝐵 )  →  𝐵  ⊆  𝑋 )  | 
						
						
							| 6 | 
							
								
							 | 
							elpw2g | 
							⊢ ( 𝑋  ∈  dom  Fil  →  ( 𝐵  ∈  𝒫  𝑋  ↔  𝐵  ⊆  𝑋 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							biimpar | 
							⊢ ( ( 𝑋  ∈  dom  Fil  ∧  𝐵  ⊆  𝑋 )  →  𝐵  ∈  𝒫  𝑋 )  | 
						
						
							| 8 | 
							
								4 5 7
							 | 
							syl2an | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝐹  ∧  𝐵  ⊆  𝑋  ∧  𝐴  ⊆  𝐵 ) )  →  𝐵  ∈  𝒫  𝑋 )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr1 | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝐹  ∧  𝐵  ⊆  𝑋  ∧  𝐴  ⊆  𝐵 ) )  →  𝐴  ∈  𝐹 )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝐹  ∧  𝐵  ⊆  𝑋  ∧  𝐴  ⊆  𝐵 ) )  →  𝐴  ⊆  𝐵 )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							elpwd | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝐹  ∧  𝐵  ⊆  𝑋  ∧  𝐴  ⊆  𝐵 ) )  →  𝐴  ∈  𝒫  𝐵 )  | 
						
						
							| 12 | 
							
								
							 | 
							inelcm | 
							⊢ ( ( 𝐴  ∈  𝐹  ∧  𝐴  ∈  𝒫  𝐵 )  →  ( 𝐹  ∩  𝒫  𝐵 )  ≠  ∅ )  | 
						
						
							| 13 | 
							
								9 11 12
							 | 
							syl2anc | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝐹  ∧  𝐵  ⊆  𝑋  ∧  𝐴  ⊆  𝐵 ) )  →  ( 𝐹  ∩  𝒫  𝐵 )  ≠  ∅ )  | 
						
						
							| 14 | 
							
								
							 | 
							pweq | 
							⊢ ( 𝑥  =  𝐵  →  𝒫  𝑥  =  𝒫  𝐵 )  | 
						
						
							| 15 | 
							
								14
							 | 
							ineq2d | 
							⊢ ( 𝑥  =  𝐵  →  ( 𝐹  ∩  𝒫  𝑥 )  =  ( 𝐹  ∩  𝒫  𝐵 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							neeq1d | 
							⊢ ( 𝑥  =  𝐵  →  ( ( 𝐹  ∩  𝒫  𝑥 )  ≠  ∅  ↔  ( 𝐹  ∩  𝒫  𝐵 )  ≠  ∅ ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  𝐵  →  ( 𝑥  ∈  𝐹  ↔  𝐵  ∈  𝐹 ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝐵  →  ( ( ( 𝐹  ∩  𝒫  𝑥 )  ≠  ∅  →  𝑥  ∈  𝐹 )  ↔  ( ( 𝐹  ∩  𝒫  𝐵 )  ≠  ∅  →  𝐵  ∈  𝐹 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							rspccv | 
							⊢ ( ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝐹  ∩  𝒫  𝑥 )  ≠  ∅  →  𝑥  ∈  𝐹 )  →  ( 𝐵  ∈  𝒫  𝑋  →  ( ( 𝐹  ∩  𝒫  𝐵 )  ≠  ∅  →  𝐵  ∈  𝐹 ) ) )  | 
						
						
							| 20 | 
							
								3 8 13 19
							 | 
							syl3c | 
							⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝐹  ∧  𝐵  ⊆  𝑋  ∧  𝐴  ⊆  𝐵 ) )  →  𝐵  ∈  𝐹 )  |