Step |
Hyp |
Ref |
Expression |
1 |
|
isfil |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) ) |
2 |
1
|
simprbi |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) |
4 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ dom Fil ) |
5 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊆ 𝑋 ) |
6 |
|
elpw2g |
⊢ ( 𝑋 ∈ dom Fil → ( 𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋 ) ) |
7 |
6
|
biimpar |
⊢ ( ( 𝑋 ∈ dom Fil ∧ 𝐵 ⊆ 𝑋 ) → 𝐵 ∈ 𝒫 𝑋 ) |
8 |
4 5 7
|
syl2an |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐵 ∈ 𝒫 𝑋 ) |
9 |
|
simpr1 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐴 ∈ 𝐹 ) |
10 |
|
simpr3 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐴 ⊆ 𝐵 ) |
11 |
9 10
|
elpwd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐴 ∈ 𝒫 𝐵 ) |
12 |
|
inelcm |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ∈ 𝒫 𝐵 ) → ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ ) |
13 |
9 11 12
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ ) |
14 |
|
pweq |
⊢ ( 𝑥 = 𝐵 → 𝒫 𝑥 = 𝒫 𝐵 ) |
15 |
14
|
ineq2d |
⊢ ( 𝑥 = 𝐵 → ( 𝐹 ∩ 𝒫 𝑥 ) = ( 𝐹 ∩ 𝒫 𝐵 ) ) |
16 |
15
|
neeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ ↔ ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ ) ) |
17 |
|
eleq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐹 ↔ 𝐵 ∈ 𝐹 ) ) |
18 |
16 17
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ↔ ( ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ → 𝐵 ∈ 𝐹 ) ) ) |
19 |
18
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) → ( 𝐵 ∈ 𝒫 𝑋 → ( ( 𝐹 ∩ 𝒫 𝐵 ) ≠ ∅ → 𝐵 ∈ 𝐹 ) ) ) |
20 |
3 8 13 19
|
syl3c |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵 ) ) → 𝐵 ∈ 𝐹 ) |