| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝒫  𝒫  𝑋  ∈  dom  card )  →  𝒫  𝒫  𝑋  ∈  dom  card ) | 
						
							| 2 |  | rabss | ⊢ ( { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ⊆  𝒫  𝒫  𝑋  ↔  ∀ 𝑔  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑔  →  𝑔  ∈  𝒫  𝒫  𝑋 ) ) | 
						
							| 3 |  | filsspw | ⊢ ( 𝑔  ∈  ( Fil ‘ 𝑋 )  →  𝑔  ⊆  𝒫  𝑋 ) | 
						
							| 4 |  | velpw | ⊢ ( 𝑔  ∈  𝒫  𝒫  𝑋  ↔  𝑔  ⊆  𝒫  𝑋 ) | 
						
							| 5 | 3 4 | sylibr | ⊢ ( 𝑔  ∈  ( Fil ‘ 𝑋 )  →  𝑔  ∈  𝒫  𝒫  𝑋 ) | 
						
							| 6 | 5 | a1d | ⊢ ( 𝑔  ∈  ( Fil ‘ 𝑋 )  →  ( 𝐹  ⊆  𝑔  →  𝑔  ∈  𝒫  𝒫  𝑋 ) ) | 
						
							| 7 | 2 6 | mprgbir | ⊢ { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ⊆  𝒫  𝒫  𝑋 | 
						
							| 8 |  | ssnum | ⊢ ( ( 𝒫  𝒫  𝑋  ∈  dom  card  ∧  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ⊆  𝒫  𝒫  𝑋 )  →  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∈  dom  card ) | 
						
							| 9 | 1 7 8 | sylancl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝒫  𝒫  𝑋  ∈  dom  card )  →  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∈  dom  card ) | 
						
							| 10 |  | ssid | ⊢ 𝐹  ⊆  𝐹 | 
						
							| 11 | 10 | jctr | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐹 ) ) | 
						
							| 12 |  | sseq2 | ⊢ ( 𝑔  =  𝐹  →  ( 𝐹  ⊆  𝑔  ↔  𝐹  ⊆  𝐹 ) ) | 
						
							| 13 | 12 | elrab | ⊢ ( 𝐹  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ↔  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐹 ) ) | 
						
							| 14 | 11 13 | sylibr | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ) | 
						
							| 15 | 14 | ne0d | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ≠  ∅ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝒫  𝒫  𝑋  ∈  dom  card )  →  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ≠  ∅ ) | 
						
							| 17 |  | sseq2 | ⊢ ( 𝑔  =  ∪  𝑥  →  ( 𝐹  ⊆  𝑔  ↔  𝐹  ⊆  ∪  𝑥 ) ) | 
						
							| 18 |  | simpr1 | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  𝑥  ≠  ∅  ∧   [⊊]   Or  𝑥 ) )  →  𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ) | 
						
							| 19 |  | ssrab | ⊢ ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ↔  ( 𝑥  ⊆  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑔  ∈  𝑥 𝐹  ⊆  𝑔 ) ) | 
						
							| 20 | 18 19 | sylib | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  𝑥  ≠  ∅  ∧   [⊊]   Or  𝑥 ) )  →  ( 𝑥  ⊆  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑔  ∈  𝑥 𝐹  ⊆  𝑔 ) ) | 
						
							| 21 | 20 | simpld | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  𝑥  ≠  ∅  ∧   [⊊]   Or  𝑥 ) )  →  𝑥  ⊆  ( Fil ‘ 𝑋 ) ) | 
						
							| 22 |  | simpr2 | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  𝑥  ≠  ∅  ∧   [⊊]   Or  𝑥 ) )  →  𝑥  ≠  ∅ ) | 
						
							| 23 |  | simpr3 | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  𝑥  ≠  ∅  ∧   [⊊]   Or  𝑥 ) )  →   [⊊]   Or  𝑥 ) | 
						
							| 24 |  | sorpssun | ⊢ ( (  [⊊]   Or  𝑥  ∧  ( 𝑔  ∈  𝑥  ∧  ℎ  ∈  𝑥 ) )  →  ( 𝑔  ∪  ℎ )  ∈  𝑥 ) | 
						
							| 25 | 24 | ralrimivva | ⊢ (  [⊊]   Or  𝑥  →  ∀ 𝑔  ∈  𝑥 ∀ ℎ  ∈  𝑥 ( 𝑔  ∪  ℎ )  ∈  𝑥 ) | 
						
							| 26 | 23 25 | syl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  𝑥  ≠  ∅  ∧   [⊊]   Or  𝑥 ) )  →  ∀ 𝑔  ∈  𝑥 ∀ ℎ  ∈  𝑥 ( 𝑔  ∪  ℎ )  ∈  𝑥 ) | 
						
							| 27 |  | filuni | ⊢ ( ( 𝑥  ⊆  ( Fil ‘ 𝑋 )  ∧  𝑥  ≠  ∅  ∧  ∀ 𝑔  ∈  𝑥 ∀ ℎ  ∈  𝑥 ( 𝑔  ∪  ℎ )  ∈  𝑥 )  →  ∪  𝑥  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 28 | 21 22 26 27 | syl3anc | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  𝑥  ≠  ∅  ∧   [⊊]   Or  𝑥 ) )  →  ∪  𝑥  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 29 |  | n0 | ⊢ ( 𝑥  ≠  ∅  ↔  ∃ ℎ ℎ  ∈  𝑥 ) | 
						
							| 30 |  | ssel2 | ⊢ ( ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  ℎ  ∈  𝑥 )  →  ℎ  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ) | 
						
							| 31 |  | sseq2 | ⊢ ( 𝑔  =  ℎ  →  ( 𝐹  ⊆  𝑔  ↔  𝐹  ⊆  ℎ ) ) | 
						
							| 32 | 31 | elrab | ⊢ ( ℎ  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ↔  ( ℎ  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  ℎ ) ) | 
						
							| 33 | 30 32 | sylib | ⊢ ( ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  ℎ  ∈  𝑥 )  →  ( ℎ  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  ℎ ) ) | 
						
							| 34 | 33 | simprd | ⊢ ( ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  ℎ  ∈  𝑥 )  →  𝐹  ⊆  ℎ ) | 
						
							| 35 |  | ssuni | ⊢ ( ( 𝐹  ⊆  ℎ  ∧  ℎ  ∈  𝑥 )  →  𝐹  ⊆  ∪  𝑥 ) | 
						
							| 36 | 34 35 | sylancom | ⊢ ( ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  ℎ  ∈  𝑥 )  →  𝐹  ⊆  ∪  𝑥 ) | 
						
							| 37 | 36 | ex | ⊢ ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  →  ( ℎ  ∈  𝑥  →  𝐹  ⊆  ∪  𝑥 ) ) | 
						
							| 38 | 37 | exlimdv | ⊢ ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  →  ( ∃ ℎ ℎ  ∈  𝑥  →  𝐹  ⊆  ∪  𝑥 ) ) | 
						
							| 39 | 29 38 | biimtrid | ⊢ ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  →  ( 𝑥  ≠  ∅  →  𝐹  ⊆  ∪  𝑥 ) ) | 
						
							| 40 | 18 22 39 | sylc | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  𝑥  ≠  ∅  ∧   [⊊]   Or  𝑥 ) )  →  𝐹  ⊆  ∪  𝑥 ) | 
						
							| 41 | 17 28 40 | elrabd | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  𝑥  ≠  ∅  ∧   [⊊]   Or  𝑥 ) )  →  ∪  𝑥  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ) | 
						
							| 42 | 41 | ex | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  𝑥  ≠  ∅  ∧   [⊊]   Or  𝑥 )  →  ∪  𝑥  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ) ) | 
						
							| 43 | 42 | alrimiv | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ∀ 𝑥 ( ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  𝑥  ≠  ∅  ∧   [⊊]   Or  𝑥 )  →  ∪  𝑥  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝒫  𝒫  𝑋  ∈  dom  card )  →  ∀ 𝑥 ( ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  𝑥  ≠  ∅  ∧   [⊊]   Or  𝑥 )  →  ∪  𝑥  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ) ) | 
						
							| 45 |  | zornn0g | ⊢ ( ( { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∈  dom  card  ∧  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ≠  ∅  ∧  ∀ 𝑥 ( ( 𝑥  ⊆  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  𝑥  ≠  ∅  ∧   [⊊]   Or  𝑥 )  →  ∪  𝑥  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ) )  →  ∃ 𝑓  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ∀ ℎ  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ¬  𝑓  ⊊  ℎ ) | 
						
							| 46 | 9 16 44 45 | syl3anc | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝒫  𝒫  𝑋  ∈  dom  card )  →  ∃ 𝑓  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ∀ ℎ  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ¬  𝑓  ⊊  ℎ ) | 
						
							| 47 |  | sseq2 | ⊢ ( 𝑔  =  𝑓  →  ( 𝐹  ⊆  𝑔  ↔  𝐹  ⊆  𝑓 ) ) | 
						
							| 48 | 47 | elrab | ⊢ ( 𝑓  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ↔  ( 𝑓  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝑓 ) ) | 
						
							| 49 | 31 | ralrab | ⊢ ( ∀ ℎ  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ¬  𝑓  ⊊  ℎ  ↔  ∀ ℎ  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  ℎ  →  ¬  𝑓  ⊊  ℎ ) ) | 
						
							| 50 |  | simpll | ⊢ ( ( ( 𝑓  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝑓 )  ∧  ∀ ℎ  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  ℎ  →  ¬  𝑓  ⊊  ℎ ) )  →  𝑓  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 51 |  | sstr2 | ⊢ ( 𝐹  ⊆  𝑓  →  ( 𝑓  ⊆  ℎ  →  𝐹  ⊆  ℎ ) ) | 
						
							| 52 | 51 | imim1d | ⊢ ( 𝐹  ⊆  𝑓  →  ( ( 𝐹  ⊆  ℎ  →  ¬  𝑓  ⊊  ℎ )  →  ( 𝑓  ⊆  ℎ  →  ¬  𝑓  ⊊  ℎ ) ) ) | 
						
							| 53 |  | df-pss | ⊢ ( 𝑓  ⊊  ℎ  ↔  ( 𝑓  ⊆  ℎ  ∧  𝑓  ≠  ℎ ) ) | 
						
							| 54 | 53 | simplbi2 | ⊢ ( 𝑓  ⊆  ℎ  →  ( 𝑓  ≠  ℎ  →  𝑓  ⊊  ℎ ) ) | 
						
							| 55 | 54 | necon1bd | ⊢ ( 𝑓  ⊆  ℎ  →  ( ¬  𝑓  ⊊  ℎ  →  𝑓  =  ℎ ) ) | 
						
							| 56 | 55 | a2i | ⊢ ( ( 𝑓  ⊆  ℎ  →  ¬  𝑓  ⊊  ℎ )  →  ( 𝑓  ⊆  ℎ  →  𝑓  =  ℎ ) ) | 
						
							| 57 | 52 56 | syl6 | ⊢ ( 𝐹  ⊆  𝑓  →  ( ( 𝐹  ⊆  ℎ  →  ¬  𝑓  ⊊  ℎ )  →  ( 𝑓  ⊆  ℎ  →  𝑓  =  ℎ ) ) ) | 
						
							| 58 | 57 | ralimdv | ⊢ ( 𝐹  ⊆  𝑓  →  ( ∀ ℎ  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  ℎ  →  ¬  𝑓  ⊊  ℎ )  →  ∀ ℎ  ∈  ( Fil ‘ 𝑋 ) ( 𝑓  ⊆  ℎ  →  𝑓  =  ℎ ) ) ) | 
						
							| 59 | 58 | imp | ⊢ ( ( 𝐹  ⊆  𝑓  ∧  ∀ ℎ  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  ℎ  →  ¬  𝑓  ⊊  ℎ ) )  →  ∀ ℎ  ∈  ( Fil ‘ 𝑋 ) ( 𝑓  ⊆  ℎ  →  𝑓  =  ℎ ) ) | 
						
							| 60 | 59 | adantll | ⊢ ( ( ( 𝑓  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝑓 )  ∧  ∀ ℎ  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  ℎ  →  ¬  𝑓  ⊊  ℎ ) )  →  ∀ ℎ  ∈  ( Fil ‘ 𝑋 ) ( 𝑓  ⊆  ℎ  →  𝑓  =  ℎ ) ) | 
						
							| 61 |  | isufil2 | ⊢ ( 𝑓  ∈  ( UFil ‘ 𝑋 )  ↔  ( 𝑓  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ ℎ  ∈  ( Fil ‘ 𝑋 ) ( 𝑓  ⊆  ℎ  →  𝑓  =  ℎ ) ) ) | 
						
							| 62 | 50 60 61 | sylanbrc | ⊢ ( ( ( 𝑓  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝑓 )  ∧  ∀ ℎ  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  ℎ  →  ¬  𝑓  ⊊  ℎ ) )  →  𝑓  ∈  ( UFil ‘ 𝑋 ) ) | 
						
							| 63 |  | simplr | ⊢ ( ( ( 𝑓  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝑓 )  ∧  ∀ ℎ  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  ℎ  →  ¬  𝑓  ⊊  ℎ ) )  →  𝐹  ⊆  𝑓 ) | 
						
							| 64 | 62 63 | jca | ⊢ ( ( ( 𝑓  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝑓 )  ∧  ∀ ℎ  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  ℎ  →  ¬  𝑓  ⊊  ℎ ) )  →  ( 𝑓  ∈  ( UFil ‘ 𝑋 )  ∧  𝐹  ⊆  𝑓 ) ) | 
						
							| 65 | 48 49 64 | syl2anb | ⊢ ( ( 𝑓  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 }  ∧  ∀ ℎ  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ¬  𝑓  ⊊  ℎ )  →  ( 𝑓  ∈  ( UFil ‘ 𝑋 )  ∧  𝐹  ⊆  𝑓 ) ) | 
						
							| 66 | 65 | reximi2 | ⊢ ( ∃ 𝑓  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ∀ ℎ  ∈  { 𝑔  ∈  ( Fil ‘ 𝑋 )  ∣  𝐹  ⊆  𝑔 } ¬  𝑓  ⊊  ℎ  →  ∃ 𝑓  ∈  ( UFil ‘ 𝑋 ) 𝐹  ⊆  𝑓 ) | 
						
							| 67 | 46 66 | syl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝒫  𝒫  𝑋  ∈  dom  card )  →  ∃ 𝑓  ∈  ( UFil ‘ 𝑋 ) 𝐹  ⊆  𝑓 ) |