Step |
Hyp |
Ref |
Expression |
1 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
2 |
|
fbasne0 |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ≠ ∅ ) |
3 |
1 2
|
syl |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) |
4 |
|
n0 |
⊢ ( 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐹 ) |
5 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ⊆ 𝑋 ) |
6 |
|
ssid |
⊢ 𝑋 ⊆ 𝑋 |
7 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑋 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) ) → 𝑋 ∈ 𝐹 ) |
8 |
7
|
3exp2 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → ( 𝑋 ⊆ 𝑋 → ( 𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹 ) ) ) ) |
9 |
8
|
imp |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑋 ⊆ 𝑋 → ( 𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹 ) ) ) |
10 |
6 9
|
mpi |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹 ) ) |
11 |
5 10
|
mpd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) → 𝑋 ∈ 𝐹 ) |
12 |
11
|
ex |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → 𝑋 ∈ 𝐹 ) ) |
13 |
12
|
exlimdv |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑥 𝑥 ∈ 𝐹 → 𝑋 ∈ 𝐹 ) ) |
14 |
4 13
|
syl5bi |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ≠ ∅ → 𝑋 ∈ 𝐹 ) ) |
15 |
3 14
|
mpd |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) |