Metamath Proof Explorer


Theorem filuni

Description: The union of a nonempty set of filters with a common base and closed under pairwise union is a filter. (Contributed by Mario Carneiro, 28-Nov-2013) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion filuni ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 eluni2 ( 𝑥 𝐹 ↔ ∃ 𝑓𝐹 𝑥𝑓 )
2 ssel2 ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓𝐹 ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) )
3 filelss ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥𝑓 ) → 𝑥𝑋 )
4 3 ex ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥𝑓𝑥𝑋 ) )
5 2 4 syl ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓𝐹 ) → ( 𝑥𝑓𝑥𝑋 ) )
6 5 rexlimdva ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ( ∃ 𝑓𝐹 𝑥𝑓𝑥𝑋 ) )
7 6 3ad2ant1 ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) → ( ∃ 𝑓𝐹 𝑥𝑓𝑥𝑋 ) )
8 1 7 syl5bi ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) → ( 𝑥 𝐹𝑥𝑋 ) )
9 8 pm4.71rd ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) → ( 𝑥 𝐹 ↔ ( 𝑥𝑋𝑥 𝐹 ) ) )
10 ssn0 ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → ( Fil ‘ 𝑋 ) ≠ ∅ )
11 fvprc ( ¬ 𝑋 ∈ V → ( Fil ‘ 𝑋 ) = ∅ )
12 11 necon1ai ( ( Fil ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ V )
13 10 12 syl ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → 𝑋 ∈ V )
14 13 3adant3 ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) → 𝑋 ∈ V )
15 filtop ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → 𝑋𝑓 )
16 2 15 syl ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓𝐹 ) → 𝑋𝑓 )
17 16 a1d ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓𝐹 ) → ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑋𝑓 ) )
18 17 ralimdva ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ( ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 → ∀ 𝑓𝐹 𝑋𝑓 ) )
19 r19.2z ( ( 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹 𝑋𝑓 ) → ∃ 𝑓𝐹 𝑋𝑓 )
20 19 ex ( 𝐹 ≠ ∅ → ( ∀ 𝑓𝐹 𝑋𝑓 → ∃ 𝑓𝐹 𝑋𝑓 ) )
21 18 20 sylan9 ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → ( ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 → ∃ 𝑓𝐹 𝑋𝑓 ) )
22 21 3impia ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) → ∃ 𝑓𝐹 𝑋𝑓 )
23 eluni2 ( 𝑋 𝐹 ↔ ∃ 𝑓𝐹 𝑋𝑓 )
24 22 23 sylibr ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) → 𝑋 𝐹 )
25 sbcel1v ( [ 𝑋 / 𝑥 ] 𝑥 𝐹𝑋 𝐹 )
26 24 25 sylibr ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) → [ 𝑋 / 𝑥 ] 𝑥 𝐹 )
27 0nelfil ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝑓 )
28 2 27 syl ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓𝐹 ) → ¬ ∅ ∈ 𝑓 )
29 28 ralrimiva ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ∀ 𝑓𝐹 ¬ ∅ ∈ 𝑓 )
30 29 3ad2ant1 ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) → ∀ 𝑓𝐹 ¬ ∅ ∈ 𝑓 )
31 sbcel1v ( [ ∅ / 𝑥 ] 𝑥 𝐹 ↔ ∅ ∈ 𝐹 )
32 eluni2 ( ∅ ∈ 𝐹 ↔ ∃ 𝑓𝐹 ∅ ∈ 𝑓 )
33 31 32 bitri ( [ ∅ / 𝑥 ] 𝑥 𝐹 ↔ ∃ 𝑓𝐹 ∅ ∈ 𝑓 )
34 33 notbii ( ¬ [ ∅ / 𝑥 ] 𝑥 𝐹 ↔ ¬ ∃ 𝑓𝐹 ∅ ∈ 𝑓 )
35 ralnex ( ∀ 𝑓𝐹 ¬ ∅ ∈ 𝑓 ↔ ¬ ∃ 𝑓𝐹 ∅ ∈ 𝑓 )
36 34 35 bitr4i ( ¬ [ ∅ / 𝑥 ] 𝑥 𝐹 ↔ ∀ 𝑓𝐹 ¬ ∅ ∈ 𝑓 )
37 30 36 sylibr ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) → ¬ [ ∅ / 𝑥 ] 𝑥 𝐹 )
38 simp13 ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) ∧ 𝑦𝑋𝑥𝑦 ) → ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 )
39 r19.29 ( ( ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ∧ ∃ 𝑓𝐹 𝑥𝑓 ) → ∃ 𝑓𝐹 ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑓 ) )
40 39 ex ( ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 → ( ∃ 𝑓𝐹 𝑥𝑓 → ∃ 𝑓𝐹 ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑓 ) ) )
41 38 40 syl ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) ∧ 𝑦𝑋𝑥𝑦 ) → ( ∃ 𝑓𝐹 𝑥𝑓 → ∃ 𝑓𝐹 ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑓 ) ) )
42 simp1 ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) → 𝐹 ⊆ ( Fil ‘ 𝑋 ) )
43 simp1 ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦𝑋𝑥𝑦 ) → 𝐹 ⊆ ( Fil ‘ 𝑋 ) )
44 simpl ( ( 𝑓𝐹 ∧ ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑓 ) ) → 𝑓𝐹 )
45 43 44 2 syl2an ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦𝑋𝑥𝑦 ) ∧ ( 𝑓𝐹 ∧ ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑓 ) ) ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) )
46 simprrr ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦𝑋𝑥𝑦 ) ∧ ( 𝑓𝐹 ∧ ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑓 ) ) ) → 𝑥𝑓 )
47 simpl2 ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦𝑋𝑥𝑦 ) ∧ ( 𝑓𝐹 ∧ ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑓 ) ) ) → 𝑦𝑋 )
48 simpl3 ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦𝑋𝑥𝑦 ) ∧ ( 𝑓𝐹 ∧ ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑓 ) ) ) → 𝑥𝑦 )
49 filss ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥𝑓𝑦𝑋𝑥𝑦 ) ) → 𝑦𝑓 )
50 45 46 47 48 49 syl13anc ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦𝑋𝑥𝑦 ) ∧ ( 𝑓𝐹 ∧ ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑓 ) ) ) → 𝑦𝑓 )
51 50 expr ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦𝑋𝑥𝑦 ) ∧ 𝑓𝐹 ) → ( ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑓 ) → 𝑦𝑓 ) )
52 51 reximdva ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦𝑋𝑥𝑦 ) → ( ∃ 𝑓𝐹 ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑓 ) → ∃ 𝑓𝐹 𝑦𝑓 ) )
53 42 52 syl3an1 ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) ∧ 𝑦𝑋𝑥𝑦 ) → ( ∃ 𝑓𝐹 ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑓 ) → ∃ 𝑓𝐹 𝑦𝑓 ) )
54 41 53 syld ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) ∧ 𝑦𝑋𝑥𝑦 ) → ( ∃ 𝑓𝐹 𝑥𝑓 → ∃ 𝑓𝐹 𝑦𝑓 ) )
55 sbcel1v ( [ 𝑥 / 𝑥 ] 𝑥 𝐹𝑥 𝐹 )
56 55 1 bitri ( [ 𝑥 / 𝑥 ] 𝑥 𝐹 ↔ ∃ 𝑓𝐹 𝑥𝑓 )
57 sbcel1v ( [ 𝑦 / 𝑥 ] 𝑥 𝐹𝑦 𝐹 )
58 eluni2 ( 𝑦 𝐹 ↔ ∃ 𝑓𝐹 𝑦𝑓 )
59 57 58 bitri ( [ 𝑦 / 𝑥 ] 𝑥 𝐹 ↔ ∃ 𝑓𝐹 𝑦𝑓 )
60 54 56 59 3imtr4g ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) ∧ 𝑦𝑋𝑥𝑦 ) → ( [ 𝑥 / 𝑥 ] 𝑥 𝐹[ 𝑦 / 𝑥 ] 𝑥 𝐹 ) )
61 simp13 ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) ∧ 𝑦𝑋𝑥𝑋 ) → ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 )
62 r19.29 ( ( ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ∧ ∃ 𝑓𝐹 𝑦𝑓 ) → ∃ 𝑓𝐹 ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑦𝑓 ) )
63 62 ex ( ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 → ( ∃ 𝑓𝐹 𝑦𝑓 → ∃ 𝑓𝐹 ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑦𝑓 ) ) )
64 61 63 syl ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) ∧ 𝑦𝑋𝑥𝑋 ) → ( ∃ 𝑓𝐹 𝑦𝑓 → ∃ 𝑓𝐹 ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑦𝑓 ) ) )
65 simp11 ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) ∧ 𝑦𝑋𝑥𝑋 ) → 𝐹 ⊆ ( Fil ‘ 𝑋 ) )
66 r19.29 ( ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ∧ ∃ 𝑔𝐹 𝑥𝑔 ) → ∃ 𝑔𝐹 ( ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑔 ) )
67 66 ex ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 → ( ∃ 𝑔𝐹 𝑥𝑔 → ∃ 𝑔𝐹 ( ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑔 ) ) )
68 elun1 ( 𝑦𝑓𝑦 ∈ ( 𝑓𝑔 ) )
69 elun2 ( 𝑥𝑔𝑥 ∈ ( 𝑓𝑔 ) )
70 68 69 anim12i ( ( 𝑦𝑓𝑥𝑔 ) → ( 𝑦 ∈ ( 𝑓𝑔 ) ∧ 𝑥 ∈ ( 𝑓𝑔 ) ) )
71 eleq2 ( = ( 𝑓𝑔 ) → ( 𝑦𝑦 ∈ ( 𝑓𝑔 ) ) )
72 eleq2 ( = ( 𝑓𝑔 ) → ( 𝑥𝑥 ∈ ( 𝑓𝑔 ) ) )
73 71 72 anbi12d ( = ( 𝑓𝑔 ) → ( ( 𝑦𝑥 ) ↔ ( 𝑦 ∈ ( 𝑓𝑔 ) ∧ 𝑥 ∈ ( 𝑓𝑔 ) ) ) )
74 73 rspcev ( ( ( 𝑓𝑔 ) ∈ 𝐹 ∧ ( 𝑦 ∈ ( 𝑓𝑔 ) ∧ 𝑥 ∈ ( 𝑓𝑔 ) ) ) → ∃ 𝐹 ( 𝑦𝑥 ) )
75 70 74 sylan2 ( ( ( 𝑓𝑔 ) ∈ 𝐹 ∧ ( 𝑦𝑓𝑥𝑔 ) ) → ∃ 𝐹 ( 𝑦𝑥 ) )
76 75 an12s ( ( 𝑦𝑓 ∧ ( ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑔 ) ) → ∃ 𝐹 ( 𝑦𝑥 ) )
77 76 ex ( 𝑦𝑓 → ( ( ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑔 ) → ∃ 𝐹 ( 𝑦𝑥 ) ) )
78 77 ad2antlr ( ( ( 𝑓𝐹𝑦𝑓 ) ∧ 𝑔𝐹 ) → ( ( ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑔 ) → ∃ 𝐹 ( 𝑦𝑥 ) ) )
79 78 rexlimdva ( ( 𝑓𝐹𝑦𝑓 ) → ( ∃ 𝑔𝐹 ( ( 𝑓𝑔 ) ∈ 𝐹𝑥𝑔 ) → ∃ 𝐹 ( 𝑦𝑥 ) ) )
80 67 79 syl9r ( ( 𝑓𝐹𝑦𝑓 ) → ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 → ( ∃ 𝑔𝐹 𝑥𝑔 → ∃ 𝐹 ( 𝑦𝑥 ) ) ) )
81 80 impr ( ( 𝑓𝐹 ∧ ( 𝑦𝑓 ∧ ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) ) → ( ∃ 𝑔𝐹 𝑥𝑔 → ∃ 𝐹 ( 𝑦𝑥 ) ) )
82 81 ancom2s ( ( 𝑓𝐹 ∧ ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑦𝑓 ) ) → ( ∃ 𝑔𝐹 𝑥𝑔 → ∃ 𝐹 ( 𝑦𝑥 ) ) )
83 82 rexlimiva ( ∃ 𝑓𝐹 ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑦𝑓 ) → ( ∃ 𝑔𝐹 𝑥𝑔 → ∃ 𝐹 ( 𝑦𝑥 ) ) )
84 83 imp ( ( ∃ 𝑓𝐹 ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑦𝑓 ) ∧ ∃ 𝑔𝐹 𝑥𝑔 ) → ∃ 𝐹 ( 𝑦𝑥 ) )
85 ssel2 ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ) → ∈ ( Fil ‘ 𝑋 ) )
86 filin ( ( ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦𝑥 ) → ( 𝑦𝑥 ) ∈ )
87 86 3expib ( ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑦𝑥 ) → ( 𝑦𝑥 ) ∈ ) )
88 85 87 syl ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ) → ( ( 𝑦𝑥 ) → ( 𝑦𝑥 ) ∈ ) )
89 88 reximdva ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ( ∃ 𝐹 ( 𝑦𝑥 ) → ∃ 𝐹 ( 𝑦𝑥 ) ∈ ) )
90 65 84 89 syl2im ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) ∧ 𝑦𝑋𝑥𝑋 ) → ( ( ∃ 𝑓𝐹 ( ∀ 𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹𝑦𝑓 ) ∧ ∃ 𝑔𝐹 𝑥𝑔 ) → ∃ 𝐹 ( 𝑦𝑥 ) ∈ ) )
91 64 90 syland ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) ∧ 𝑦𝑋𝑥𝑋 ) → ( ( ∃ 𝑓𝐹 𝑦𝑓 ∧ ∃ 𝑔𝐹 𝑥𝑔 ) → ∃ 𝐹 ( 𝑦𝑥 ) ∈ ) )
92 eluni2 ( 𝑥 𝐹 ↔ ∃ 𝑔𝐹 𝑥𝑔 )
93 55 92 bitri ( [ 𝑥 / 𝑥 ] 𝑥 𝐹 ↔ ∃ 𝑔𝐹 𝑥𝑔 )
94 59 93 anbi12i ( ( [ 𝑦 / 𝑥 ] 𝑥 𝐹[ 𝑥 / 𝑥 ] 𝑥 𝐹 ) ↔ ( ∃ 𝑓𝐹 𝑦𝑓 ∧ ∃ 𝑔𝐹 𝑥𝑔 ) )
95 sbcel1v ( [ ( 𝑦𝑥 ) / 𝑥 ] 𝑥 𝐹 ↔ ( 𝑦𝑥 ) ∈ 𝐹 )
96 eluni2 ( ( 𝑦𝑥 ) ∈ 𝐹 ↔ ∃ 𝐹 ( 𝑦𝑥 ) ∈ )
97 95 96 bitri ( [ ( 𝑦𝑥 ) / 𝑥 ] 𝑥 𝐹 ↔ ∃ 𝐹 ( 𝑦𝑥 ) ∈ )
98 91 94 97 3imtr4g ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) ∧ 𝑦𝑋𝑥𝑋 ) → ( ( [ 𝑦 / 𝑥 ] 𝑥 𝐹[ 𝑥 / 𝑥 ] 𝑥 𝐹 ) → [ ( 𝑦𝑥 ) / 𝑥 ] 𝑥 𝐹 ) )
99 9 14 26 37 60 98 isfild ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓𝐹𝑔𝐹 ( 𝑓𝑔 ) ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )