Step |
Hyp |
Ref |
Expression |
1 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 ) |
2 |
|
ssel2 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) |
3 |
|
filelss |
⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑓 ) → 𝑥 ⊆ 𝑋 ) |
4 |
3
|
ex |
⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
5 |
2 4
|
syl |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
6 |
5
|
rexlimdva |
⊢ ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
8 |
1 7
|
syl5bi |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ( 𝑥 ∈ ∪ 𝐹 → 𝑥 ⊆ 𝑋 ) ) |
9 |
8
|
pm4.71rd |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ( 𝑥 ∈ ∪ 𝐹 ↔ ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ ∪ 𝐹 ) ) ) |
10 |
|
ssn0 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → ( Fil ‘ 𝑋 ) ≠ ∅ ) |
11 |
|
fvprc |
⊢ ( ¬ 𝑋 ∈ V → ( Fil ‘ 𝑋 ) = ∅ ) |
12 |
11
|
necon1ai |
⊢ ( ( Fil ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ V ) |
13 |
10 12
|
syl |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → 𝑋 ∈ V ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → 𝑋 ∈ V ) |
15 |
|
filtop |
⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝑓 ) |
16 |
2 15
|
syl |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → 𝑋 ∈ 𝑓 ) |
17 |
16
|
a1d |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → 𝑋 ∈ 𝑓 ) ) |
18 |
17
|
ralimdva |
⊢ ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ∀ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) ) |
19 |
|
r19.2z |
⊢ ( ( 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) |
20 |
19
|
ex |
⊢ ( 𝐹 ≠ ∅ → ( ∀ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) ) |
21 |
18 20
|
sylan9 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) ) |
22 |
21
|
3impia |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) |
23 |
|
eluni2 |
⊢ ( 𝑋 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) |
24 |
22 23
|
sylibr |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → 𝑋 ∈ ∪ 𝐹 ) |
25 |
|
sbcel1v |
⊢ ( [ 𝑋 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ 𝑋 ∈ ∪ 𝐹 ) |
26 |
24 25
|
sylibr |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → [ 𝑋 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) |
27 |
|
0nelfil |
⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝑓 ) |
28 |
2 27
|
syl |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → ¬ ∅ ∈ 𝑓 ) |
29 |
28
|
ralrimiva |
⊢ ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ∀ 𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓 ) |
30 |
29
|
3ad2ant1 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ∀ 𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓 ) |
31 |
|
sbcel1v |
⊢ ( [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∅ ∈ ∪ 𝐹 ) |
32 |
|
eluni2 |
⊢ ( ∅ ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 ∅ ∈ 𝑓 ) |
33 |
31 32
|
bitri |
⊢ ( [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 ∅ ∈ 𝑓 ) |
34 |
33
|
notbii |
⊢ ( ¬ [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ¬ ∃ 𝑓 ∈ 𝐹 ∅ ∈ 𝑓 ) |
35 |
|
ralnex |
⊢ ( ∀ 𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓 ↔ ¬ ∃ 𝑓 ∈ 𝐹 ∅ ∈ 𝑓 ) |
36 |
34 35
|
bitr4i |
⊢ ( ¬ [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∀ 𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓 ) |
37 |
30 36
|
sylibr |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ¬ [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) |
38 |
|
simp13 |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) |
39 |
|
r19.29 |
⊢ ( ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) |
40 |
39
|
ex |
⊢ ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) |
41 |
38 40
|
syl |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) |
42 |
|
simp1 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → 𝐹 ⊆ ( Fil ‘ 𝑋 ) ) |
43 |
|
simp1 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → 𝐹 ⊆ ( Fil ‘ 𝑋 ) ) |
44 |
|
simpl |
⊢ ( ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) → 𝑓 ∈ 𝐹 ) |
45 |
43 44 2
|
syl2an |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) |
46 |
|
simprrr |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑥 ∈ 𝑓 ) |
47 |
|
simpl2 |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑦 ⊆ 𝑋 ) |
48 |
|
simpl3 |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑥 ⊆ 𝑦 ) |
49 |
|
filss |
⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑓 ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ) → 𝑦 ∈ 𝑓 ) |
50 |
45 46 47 48 49
|
syl13anc |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑦 ∈ 𝑓 ) |
51 |
50
|
expr |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ 𝑓 ∈ 𝐹 ) → ( ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) → 𝑦 ∈ 𝑓 ) ) |
52 |
51
|
reximdva |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) ) |
53 |
42 52
|
syl3an1 |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) ) |
54 |
41 53
|
syld |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) ) |
55 |
|
sbcel1v |
⊢ ( [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ 𝑥 ∈ ∪ 𝐹 ) |
56 |
55 1
|
bitri |
⊢ ( [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 ) |
57 |
|
sbcel1v |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ 𝑦 ∈ ∪ 𝐹 ) |
58 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) |
59 |
57 58
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) |
60 |
54 56 59
|
3imtr4g |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 → [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) ) |
61 |
|
simp13 |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) |
62 |
|
r19.29 |
⊢ ( ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ) |
63 |
62
|
ex |
⊢ ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ( ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ) ) |
64 |
61 63
|
syl |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ( ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ) ) |
65 |
|
simp11 |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ⊆ ( Fil ‘ 𝑋 ) ) |
66 |
|
r19.29 |
⊢ ( ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) → ∃ 𝑔 ∈ 𝐹 ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) ) |
67 |
66
|
ex |
⊢ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ 𝑔 ∈ 𝐹 ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) ) ) |
68 |
|
elun1 |
⊢ ( 𝑦 ∈ 𝑓 → 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ) |
69 |
|
elun2 |
⊢ ( 𝑥 ∈ 𝑔 → 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) |
70 |
68 69
|
anim12i |
⊢ ( ( 𝑦 ∈ 𝑓 ∧ 𝑥 ∈ 𝑔 ) → ( 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ∧ 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) ) |
71 |
|
eleq2 |
⊢ ( ℎ = ( 𝑓 ∪ 𝑔 ) → ( 𝑦 ∈ ℎ ↔ 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ) ) |
72 |
|
eleq2 |
⊢ ( ℎ = ( 𝑓 ∪ 𝑔 ) → ( 𝑥 ∈ ℎ ↔ 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) ) |
73 |
71 72
|
anbi12d |
⊢ ( ℎ = ( 𝑓 ∪ 𝑔 ) → ( ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ↔ ( 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ∧ 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) ) ) |
74 |
73
|
rspcev |
⊢ ( ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ( 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ∧ 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) |
75 |
70 74
|
sylan2 |
⊢ ( ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ( 𝑦 ∈ 𝑓 ∧ 𝑥 ∈ 𝑔 ) ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) |
76 |
75
|
an12s |
⊢ ( ( 𝑦 ∈ 𝑓 ∧ ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) |
77 |
76
|
ex |
⊢ ( 𝑦 ∈ 𝑓 → ( ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
78 |
77
|
ad2antlr |
⊢ ( ( ( 𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ∧ 𝑔 ∈ 𝐹 ) → ( ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
79 |
78
|
rexlimdva |
⊢ ( ( 𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) → ( ∃ 𝑔 ∈ 𝐹 ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
80 |
67 79
|
syl9r |
⊢ ( ( 𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) → ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) ) |
81 |
80
|
impr |
⊢ ( ( 𝑓 ∈ 𝐹 ∧ ( 𝑦 ∈ 𝑓 ∧ ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ) → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
82 |
81
|
ancom2s |
⊢ ( ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ) → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
83 |
82
|
rexlimiva |
⊢ ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
84 |
83
|
imp |
⊢ ( ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) |
85 |
|
ssel2 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ ℎ ∈ 𝐹 ) → ℎ ∈ ( Fil ‘ 𝑋 ) ) |
86 |
|
filin |
⊢ ( ( ℎ ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) → ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) |
87 |
86
|
3expib |
⊢ ( ℎ ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) → ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
88 |
85 87
|
syl |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ ℎ ∈ 𝐹 ) → ( ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) → ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
89 |
88
|
reximdva |
⊢ ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ( ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
90 |
65 84 89
|
syl2im |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ( ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
91 |
64 90
|
syland |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ( ( ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
92 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) |
93 |
55 92
|
bitri |
⊢ ( [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) |
94 |
59 93
|
anbi12i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ∧ [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) ↔ ( ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) ) |
95 |
|
sbcel1v |
⊢ ( [ ( 𝑦 ∩ 𝑥 ) / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ( 𝑦 ∩ 𝑥 ) ∈ ∪ 𝐹 ) |
96 |
|
eluni2 |
⊢ ( ( 𝑦 ∩ 𝑥 ) ∈ ∪ 𝐹 ↔ ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) |
97 |
95 96
|
bitri |
⊢ ( [ ( 𝑦 ∩ 𝑥 ) / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) |
98 |
91 94 97
|
3imtr4g |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ( ( [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ∧ [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) → [ ( 𝑦 ∩ 𝑥 ) / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) ) |
99 |
9 14 26 37 60 98
|
isfild |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ∪ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |