| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 ) |
| 2 |
|
ssel2 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) |
| 3 |
|
filelss |
⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑓 ) → 𝑥 ⊆ 𝑋 ) |
| 4 |
3
|
ex |
⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
| 5 |
2 4
|
syl |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
| 6 |
5
|
rexlimdva |
⊢ ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
| 8 |
1 7
|
biimtrid |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ( 𝑥 ∈ ∪ 𝐹 → 𝑥 ⊆ 𝑋 ) ) |
| 9 |
8
|
pm4.71rd |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ( 𝑥 ∈ ∪ 𝐹 ↔ ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ ∪ 𝐹 ) ) ) |
| 10 |
|
ssn0 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → ( Fil ‘ 𝑋 ) ≠ ∅ ) |
| 11 |
|
fvprc |
⊢ ( ¬ 𝑋 ∈ V → ( Fil ‘ 𝑋 ) = ∅ ) |
| 12 |
11
|
necon1ai |
⊢ ( ( Fil ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ V ) |
| 13 |
10 12
|
syl |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → 𝑋 ∈ V ) |
| 14 |
13
|
3adant3 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → 𝑋 ∈ V ) |
| 15 |
|
filtop |
⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝑓 ) |
| 16 |
2 15
|
syl |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → 𝑋 ∈ 𝑓 ) |
| 17 |
16
|
a1d |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → 𝑋 ∈ 𝑓 ) ) |
| 18 |
17
|
ralimdva |
⊢ ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ∀ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) ) |
| 19 |
|
r19.2z |
⊢ ( ( 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) |
| 20 |
19
|
ex |
⊢ ( 𝐹 ≠ ∅ → ( ∀ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) ) |
| 21 |
18 20
|
sylan9 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) ) |
| 22 |
21
|
3impia |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) |
| 23 |
|
eluni2 |
⊢ ( 𝑋 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) |
| 24 |
22 23
|
sylibr |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → 𝑋 ∈ ∪ 𝐹 ) |
| 25 |
|
sbcel1v |
⊢ ( [ 𝑋 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ 𝑋 ∈ ∪ 𝐹 ) |
| 26 |
24 25
|
sylibr |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → [ 𝑋 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) |
| 27 |
|
0nelfil |
⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝑓 ) |
| 28 |
2 27
|
syl |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → ¬ ∅ ∈ 𝑓 ) |
| 29 |
28
|
ralrimiva |
⊢ ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ∀ 𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓 ) |
| 30 |
29
|
3ad2ant1 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ∀ 𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓 ) |
| 31 |
|
sbcel1v |
⊢ ( [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∅ ∈ ∪ 𝐹 ) |
| 32 |
|
eluni2 |
⊢ ( ∅ ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 ∅ ∈ 𝑓 ) |
| 33 |
31 32
|
bitri |
⊢ ( [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 ∅ ∈ 𝑓 ) |
| 34 |
33
|
notbii |
⊢ ( ¬ [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ¬ ∃ 𝑓 ∈ 𝐹 ∅ ∈ 𝑓 ) |
| 35 |
|
ralnex |
⊢ ( ∀ 𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓 ↔ ¬ ∃ 𝑓 ∈ 𝐹 ∅ ∈ 𝑓 ) |
| 36 |
34 35
|
bitr4i |
⊢ ( ¬ [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∀ 𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓 ) |
| 37 |
30 36
|
sylibr |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ¬ [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) |
| 38 |
|
simp13 |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) |
| 39 |
|
r19.29 |
⊢ ( ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) |
| 40 |
39
|
ex |
⊢ ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) |
| 41 |
38 40
|
syl |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) |
| 42 |
|
simp1 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → 𝐹 ⊆ ( Fil ‘ 𝑋 ) ) |
| 43 |
|
simp1 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → 𝐹 ⊆ ( Fil ‘ 𝑋 ) ) |
| 44 |
|
simpl |
⊢ ( ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) → 𝑓 ∈ 𝐹 ) |
| 45 |
43 44 2
|
syl2an |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) |
| 46 |
|
simprrr |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑥 ∈ 𝑓 ) |
| 47 |
|
simpl2 |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑦 ⊆ 𝑋 ) |
| 48 |
|
simpl3 |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑥 ⊆ 𝑦 ) |
| 49 |
|
filss |
⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑓 ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ) → 𝑦 ∈ 𝑓 ) |
| 50 |
45 46 47 48 49
|
syl13anc |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑦 ∈ 𝑓 ) |
| 51 |
50
|
expr |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ 𝑓 ∈ 𝐹 ) → ( ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) → 𝑦 ∈ 𝑓 ) ) |
| 52 |
51
|
reximdva |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) ) |
| 53 |
42 52
|
syl3an1 |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) ) |
| 54 |
41 53
|
syld |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) ) |
| 55 |
|
sbcel1v |
⊢ ( [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ 𝑥 ∈ ∪ 𝐹 ) |
| 56 |
55 1
|
bitri |
⊢ ( [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 ) |
| 57 |
|
sbcel1v |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ 𝑦 ∈ ∪ 𝐹 ) |
| 58 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) |
| 59 |
57 58
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) |
| 60 |
54 56 59
|
3imtr4g |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 → [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) ) |
| 61 |
|
simp13 |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) |
| 62 |
|
r19.29 |
⊢ ( ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ) |
| 63 |
62
|
ex |
⊢ ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ( ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ) ) |
| 64 |
61 63
|
syl |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ( ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ) ) |
| 65 |
|
simp11 |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ⊆ ( Fil ‘ 𝑋 ) ) |
| 66 |
|
r19.29 |
⊢ ( ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) → ∃ 𝑔 ∈ 𝐹 ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) ) |
| 67 |
66
|
ex |
⊢ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ 𝑔 ∈ 𝐹 ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) ) ) |
| 68 |
|
elun1 |
⊢ ( 𝑦 ∈ 𝑓 → 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ) |
| 69 |
|
elun2 |
⊢ ( 𝑥 ∈ 𝑔 → 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) |
| 70 |
68 69
|
anim12i |
⊢ ( ( 𝑦 ∈ 𝑓 ∧ 𝑥 ∈ 𝑔 ) → ( 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ∧ 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) ) |
| 71 |
|
eleq2 |
⊢ ( ℎ = ( 𝑓 ∪ 𝑔 ) → ( 𝑦 ∈ ℎ ↔ 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ) ) |
| 72 |
|
eleq2 |
⊢ ( ℎ = ( 𝑓 ∪ 𝑔 ) → ( 𝑥 ∈ ℎ ↔ 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) ) |
| 73 |
71 72
|
anbi12d |
⊢ ( ℎ = ( 𝑓 ∪ 𝑔 ) → ( ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ↔ ( 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ∧ 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) ) ) |
| 74 |
73
|
rspcev |
⊢ ( ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ( 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ∧ 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) |
| 75 |
70 74
|
sylan2 |
⊢ ( ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ( 𝑦 ∈ 𝑓 ∧ 𝑥 ∈ 𝑔 ) ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) |
| 76 |
75
|
an12s |
⊢ ( ( 𝑦 ∈ 𝑓 ∧ ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) |
| 77 |
76
|
ex |
⊢ ( 𝑦 ∈ 𝑓 → ( ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
| 78 |
77
|
ad2antlr |
⊢ ( ( ( 𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ∧ 𝑔 ∈ 𝐹 ) → ( ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
| 79 |
78
|
rexlimdva |
⊢ ( ( 𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) → ( ∃ 𝑔 ∈ 𝐹 ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
| 80 |
67 79
|
syl9r |
⊢ ( ( 𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) → ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) ) |
| 81 |
80
|
impr |
⊢ ( ( 𝑓 ∈ 𝐹 ∧ ( 𝑦 ∈ 𝑓 ∧ ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ) → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
| 82 |
81
|
ancom2s |
⊢ ( ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ) → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
| 83 |
82
|
rexlimiva |
⊢ ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
| 84 |
83
|
imp |
⊢ ( ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) |
| 85 |
|
ssel2 |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ ℎ ∈ 𝐹 ) → ℎ ∈ ( Fil ‘ 𝑋 ) ) |
| 86 |
|
filin |
⊢ ( ( ℎ ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) → ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) |
| 87 |
86
|
3expib |
⊢ ( ℎ ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) → ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
| 88 |
85 87
|
syl |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ ℎ ∈ 𝐹 ) → ( ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) → ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
| 89 |
88
|
reximdva |
⊢ ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ( ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
| 90 |
65 84 89
|
syl2im |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ( ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
| 91 |
64 90
|
syland |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ( ( ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
| 92 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) |
| 93 |
55 92
|
bitri |
⊢ ( [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) |
| 94 |
59 93
|
anbi12i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ∧ [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) ↔ ( ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) ) |
| 95 |
|
sbcel1v |
⊢ ( [ ( 𝑦 ∩ 𝑥 ) / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ( 𝑦 ∩ 𝑥 ) ∈ ∪ 𝐹 ) |
| 96 |
|
eluni2 |
⊢ ( ( 𝑦 ∩ 𝑥 ) ∈ ∪ 𝐹 ↔ ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) |
| 97 |
95 96
|
bitri |
⊢ ( [ ( 𝑦 ∩ 𝑥 ) / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) |
| 98 |
91 94 97
|
3imtr4g |
⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ( ( [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ∧ [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) → [ ( 𝑦 ∩ 𝑥 ) / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) ) |
| 99 |
9 14 26 37 60 98
|
isfild |
⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ∪ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |