Metamath Proof Explorer


Theorem filunirn

Description: Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion filunirn ( 𝐹 ran Fil ↔ 𝐹 ∈ ( Fil ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 fvex ( fBas ‘ 𝑦 ) ∈ V
2 1 rabex { 𝑤 ∈ ( fBas ‘ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝒫 𝑦 ( ( 𝑤 ∩ 𝒫 𝑧 ) ≠ ∅ → 𝑧𝑤 ) } ∈ V
3 df-fil Fil = ( 𝑦 ∈ V ↦ { 𝑤 ∈ ( fBas ‘ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝒫 𝑦 ( ( 𝑤 ∩ 𝒫 𝑧 ) ≠ ∅ → 𝑧𝑤 ) } )
4 2 3 fnmpti Fil Fn V
5 fnunirn ( Fil Fn V → ( 𝐹 ran Fil ↔ ∃ 𝑥 ∈ V 𝐹 ∈ ( Fil ‘ 𝑥 ) ) )
6 4 5 ax-mp ( 𝐹 ran Fil ↔ ∃ 𝑥 ∈ V 𝐹 ∈ ( Fil ‘ 𝑥 ) )
7 filunibas ( 𝐹 ∈ ( Fil ‘ 𝑥 ) → 𝐹 = 𝑥 )
8 7 fveq2d ( 𝐹 ∈ ( Fil ‘ 𝑥 ) → ( Fil ‘ 𝐹 ) = ( Fil ‘ 𝑥 ) )
9 8 eleq2d ( 𝐹 ∈ ( Fil ‘ 𝑥 ) → ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ↔ 𝐹 ∈ ( Fil ‘ 𝑥 ) ) )
10 9 ibir ( 𝐹 ∈ ( Fil ‘ 𝑥 ) → 𝐹 ∈ ( Fil ‘ 𝐹 ) )
11 10 rexlimivw ( ∃ 𝑥 ∈ V 𝐹 ∈ ( Fil ‘ 𝑥 ) → 𝐹 ∈ ( Fil ‘ 𝐹 ) )
12 6 11 sylbi ( 𝐹 ran Fil → 𝐹 ∈ ( Fil ‘ 𝐹 ) )
13 fvssunirn ( Fil ‘ 𝐹 ) ⊆ ran Fil
14 13 sseli ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → 𝐹 ran Fil )
15 12 14 impbii ( 𝐹 ran Fil ↔ 𝐹 ∈ ( Fil ‘ 𝐹 ) )