Step |
Hyp |
Ref |
Expression |
1 |
|
imassrn |
⊢ ( ◡ 𝐹 “ 𝐵 ) ⊆ ran ◡ 𝐹 |
2 |
|
dfdm4 |
⊢ dom 𝐹 = ran ◡ 𝐹 |
3 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) |
4 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
5 |
3 4
|
eqsstrdi |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 ⊆ 𝐴 ) |
6 |
2 5
|
eqsstrrid |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ran ◡ 𝐹 ⊆ 𝐴 ) |
7 |
1 6
|
sstrid |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐹 “ 𝐵 ) ⊆ 𝐴 ) |
8 |
|
fimass |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ) |
9 |
|
ffun |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Fun 𝐹 ) |
10 |
4 3
|
sseqtrrid |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐴 ⊆ dom 𝐹 ) |
11 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ 𝐴 ⊆ ( ◡ 𝐹 “ 𝐵 ) ) ) |
12 |
9 10 11
|
syl2anc |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ 𝐴 ⊆ ( ◡ 𝐹 “ 𝐵 ) ) ) |
13 |
8 12
|
mpbid |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐴 ⊆ ( ◡ 𝐹 “ 𝐵 ) ) |
14 |
7 13
|
eqssd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐹 “ 𝐵 ) = 𝐴 ) |