Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimacnvdisj | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐵 ∩ 𝐶 ) = ∅ ) → ( ◡ 𝐹 “ 𝐶 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn | ⊢ ran 𝐹 = dom ◡ 𝐹 | |
| 2 | frn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ran 𝐹 ⊆ 𝐵 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐵 ∩ 𝐶 ) = ∅ ) → ran 𝐹 ⊆ 𝐵 ) |
| 4 | 1 3 | eqsstrrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐵 ∩ 𝐶 ) = ∅ ) → dom ◡ 𝐹 ⊆ 𝐵 ) |
| 5 | ssdisj | ⊢ ( ( dom ◡ 𝐹 ⊆ 𝐵 ∧ ( 𝐵 ∩ 𝐶 ) = ∅ ) → ( dom ◡ 𝐹 ∩ 𝐶 ) = ∅ ) | |
| 6 | 4 5 | sylancom | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐵 ∩ 𝐶 ) = ∅ ) → ( dom ◡ 𝐹 ∩ 𝐶 ) = ∅ ) |
| 7 | imadisj | ⊢ ( ( ◡ 𝐹 “ 𝐶 ) = ∅ ↔ ( dom ◡ 𝐹 ∩ 𝐶 ) = ∅ ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐵 ∩ 𝐶 ) = ∅ ) → ( ◡ 𝐹 “ 𝐶 ) = ∅ ) |