Metamath Proof Explorer


Theorem fimacnvdisj

Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007)

Ref Expression
Assertion fimacnvdisj ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝐵𝐶 ) = ∅ ) → ( 𝐹𝐶 ) = ∅ )

Proof

Step Hyp Ref Expression
1 df-rn ran 𝐹 = dom 𝐹
2 frn ( 𝐹 : 𝐴𝐵 → ran 𝐹𝐵 )
3 2 adantr ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝐵𝐶 ) = ∅ ) → ran 𝐹𝐵 )
4 1 3 eqsstrrid ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝐵𝐶 ) = ∅ ) → dom 𝐹𝐵 )
5 ssdisj ( ( dom 𝐹𝐵 ∧ ( 𝐵𝐶 ) = ∅ ) → ( dom 𝐹𝐶 ) = ∅ )
6 4 5 sylancom ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝐵𝐶 ) = ∅ ) → ( dom 𝐹𝐶 ) = ∅ )
7 imadisj ( ( 𝐹𝐶 ) = ∅ ↔ ( dom 𝐹𝐶 ) = ∅ )
8 6 7 sylibr ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝐵𝐶 ) = ∅ ) → ( 𝐹𝐶 ) = ∅ )