| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inpreima | ⊢ ( Fun  𝐹  →  ( ◡ 𝐹  “  ( 𝐴  ∩  ran  𝐹 ) )  =  ( ( ◡ 𝐹  “  𝐴 )  ∩  ( ◡ 𝐹  “  ran  𝐹 ) ) ) | 
						
							| 2 |  | funforn | ⊢ ( Fun  𝐹  ↔  𝐹 : dom  𝐹 –onto→ ran  𝐹 ) | 
						
							| 3 |  | fof | ⊢ ( 𝐹 : dom  𝐹 –onto→ ran  𝐹  →  𝐹 : dom  𝐹 ⟶ ran  𝐹 ) | 
						
							| 4 | 2 3 | sylbi | ⊢ ( Fun  𝐹  →  𝐹 : dom  𝐹 ⟶ ran  𝐹 ) | 
						
							| 5 |  | fimacnv | ⊢ ( 𝐹 : dom  𝐹 ⟶ ran  𝐹  →  ( ◡ 𝐹  “  ran  𝐹 )  =  dom  𝐹 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( Fun  𝐹  →  ( ◡ 𝐹  “  ran  𝐹 )  =  dom  𝐹 ) | 
						
							| 7 | 6 | ineq2d | ⊢ ( Fun  𝐹  →  ( ( ◡ 𝐹  “  𝐴 )  ∩  ( ◡ 𝐹  “  ran  𝐹 ) )  =  ( ( ◡ 𝐹  “  𝐴 )  ∩  dom  𝐹 ) ) | 
						
							| 8 |  | cnvresima | ⊢ ( ◡ ( 𝐹  ↾  dom  𝐹 )  “  𝐴 )  =  ( ( ◡ 𝐹  “  𝐴 )  ∩  dom  𝐹 ) | 
						
							| 9 |  | resdm2 | ⊢ ( 𝐹  ↾  dom  𝐹 )  =  ◡ ◡ 𝐹 | 
						
							| 10 |  | funrel | ⊢ ( Fun  𝐹  →  Rel  𝐹 ) | 
						
							| 11 |  | dfrel2 | ⊢ ( Rel  𝐹  ↔  ◡ ◡ 𝐹  =  𝐹 ) | 
						
							| 12 | 10 11 | sylib | ⊢ ( Fun  𝐹  →  ◡ ◡ 𝐹  =  𝐹 ) | 
						
							| 13 | 9 12 | eqtrid | ⊢ ( Fun  𝐹  →  ( 𝐹  ↾  dom  𝐹 )  =  𝐹 ) | 
						
							| 14 | 13 | cnveqd | ⊢ ( Fun  𝐹  →  ◡ ( 𝐹  ↾  dom  𝐹 )  =  ◡ 𝐹 ) | 
						
							| 15 | 14 | imaeq1d | ⊢ ( Fun  𝐹  →  ( ◡ ( 𝐹  ↾  dom  𝐹 )  “  𝐴 )  =  ( ◡ 𝐹  “  𝐴 ) ) | 
						
							| 16 | 8 15 | eqtr3id | ⊢ ( Fun  𝐹  →  ( ( ◡ 𝐹  “  𝐴 )  ∩  dom  𝐹 )  =  ( ◡ 𝐹  “  𝐴 ) ) | 
						
							| 17 | 1 7 16 | 3eqtrrd | ⊢ ( Fun  𝐹  →  ( ◡ 𝐹  “  𝐴 )  =  ( ◡ 𝐹  “  ( 𝐴  ∩  ran  𝐹 ) ) ) |