Metamath Proof Explorer


Theorem fimadmfo

Description: A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022)

Ref Expression
Assertion fimadmfo ( 𝐹 : 𝐴𝐵𝐹 : 𝐴onto→ ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 fdm ( 𝐹 : 𝐴𝐵 → dom 𝐹 = 𝐴 )
2 ffn ( 𝐹 : 𝐴𝐵𝐹 Fn 𝐴 )
3 2 adantr ( ( 𝐹 : 𝐴𝐵 ∧ dom 𝐹 = 𝐴 ) → 𝐹 Fn 𝐴 )
4 dffn4 ( 𝐹 Fn 𝐴𝐹 : 𝐴onto→ ran 𝐹 )
5 3 4 sylib ( ( 𝐹 : 𝐴𝐵 ∧ dom 𝐹 = 𝐴 ) → 𝐹 : 𝐴onto→ ran 𝐹 )
6 imaeq2 ( 𝐴 = dom 𝐹 → ( 𝐹𝐴 ) = ( 𝐹 “ dom 𝐹 ) )
7 imadmrn ( 𝐹 “ dom 𝐹 ) = ran 𝐹
8 6 7 eqtrdi ( 𝐴 = dom 𝐹 → ( 𝐹𝐴 ) = ran 𝐹 )
9 8 eqcoms ( dom 𝐹 = 𝐴 → ( 𝐹𝐴 ) = ran 𝐹 )
10 9 adantl ( ( 𝐹 : 𝐴𝐵 ∧ dom 𝐹 = 𝐴 ) → ( 𝐹𝐴 ) = ran 𝐹 )
11 foeq3 ( ( 𝐹𝐴 ) = ran 𝐹 → ( 𝐹 : 𝐴onto→ ( 𝐹𝐴 ) ↔ 𝐹 : 𝐴onto→ ran 𝐹 ) )
12 10 11 syl ( ( 𝐹 : 𝐴𝐵 ∧ dom 𝐹 = 𝐴 ) → ( 𝐹 : 𝐴onto→ ( 𝐹𝐴 ) ↔ 𝐹 : 𝐴onto→ ran 𝐹 ) )
13 5 12 mpbird ( ( 𝐹 : 𝐴𝐵 ∧ dom 𝐹 = 𝐴 ) → 𝐹 : 𝐴onto→ ( 𝐹𝐴 ) )
14 1 13 mpdan ( 𝐹 : 𝐴𝐵𝐹 : 𝐴onto→ ( 𝐹𝐴 ) )