| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  dom  𝐹  =  𝐴 ) | 
						
							| 2 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  dom  𝐹  =  𝐴 )  →  𝐹  Fn  𝐴 ) | 
						
							| 4 |  | dffn4 | ⊢ ( 𝐹  Fn  𝐴  ↔  𝐹 : 𝐴 –onto→ ran  𝐹 ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  dom  𝐹  =  𝐴 )  →  𝐹 : 𝐴 –onto→ ran  𝐹 ) | 
						
							| 6 |  | imaeq2 | ⊢ ( 𝐴  =  dom  𝐹  →  ( 𝐹  “  𝐴 )  =  ( 𝐹  “  dom  𝐹 ) ) | 
						
							| 7 |  | imadmrn | ⊢ ( 𝐹  “  dom  𝐹 )  =  ran  𝐹 | 
						
							| 8 | 6 7 | eqtrdi | ⊢ ( 𝐴  =  dom  𝐹  →  ( 𝐹  “  𝐴 )  =  ran  𝐹 ) | 
						
							| 9 | 8 | eqcoms | ⊢ ( dom  𝐹  =  𝐴  →  ( 𝐹  “  𝐴 )  =  ran  𝐹 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  dom  𝐹  =  𝐴 )  →  ( 𝐹  “  𝐴 )  =  ran  𝐹 ) | 
						
							| 11 |  | foeq3 | ⊢ ( ( 𝐹  “  𝐴 )  =  ran  𝐹  →  ( 𝐹 : 𝐴 –onto→ ( 𝐹  “  𝐴 )  ↔  𝐹 : 𝐴 –onto→ ran  𝐹 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  dom  𝐹  =  𝐴 )  →  ( 𝐹 : 𝐴 –onto→ ( 𝐹  “  𝐴 )  ↔  𝐹 : 𝐴 –onto→ ran  𝐹 ) ) | 
						
							| 13 | 5 12 | mpbird | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  dom  𝐹  =  𝐴 )  →  𝐹 : 𝐴 –onto→ ( 𝐹  “  𝐴 ) ) | 
						
							| 14 | 1 13 | mpdan | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹 : 𝐴 –onto→ ( 𝐹  “  𝐴 ) ) |