Step |
Hyp |
Ref |
Expression |
1 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) |
2 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
3 |
2
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ dom 𝐹 = 𝐴 ) → 𝐹 Fn 𝐴 ) |
4 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
5 |
3 4
|
sylib |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ dom 𝐹 = 𝐴 ) → 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
6 |
|
imaeq2 |
⊢ ( 𝐴 = dom 𝐹 → ( 𝐹 “ 𝐴 ) = ( 𝐹 “ dom 𝐹 ) ) |
7 |
|
imadmrn |
⊢ ( 𝐹 “ dom 𝐹 ) = ran 𝐹 |
8 |
6 7
|
eqtrdi |
⊢ ( 𝐴 = dom 𝐹 → ( 𝐹 “ 𝐴 ) = ran 𝐹 ) |
9 |
8
|
eqcoms |
⊢ ( dom 𝐹 = 𝐴 → ( 𝐹 “ 𝐴 ) = ran 𝐹 ) |
10 |
9
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ dom 𝐹 = 𝐴 ) → ( 𝐹 “ 𝐴 ) = ran 𝐹 ) |
11 |
|
foeq3 |
⊢ ( ( 𝐹 “ 𝐴 ) = ran 𝐹 → ( 𝐹 : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ↔ 𝐹 : 𝐴 –onto→ ran 𝐹 ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ dom 𝐹 = 𝐴 ) → ( 𝐹 : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ↔ 𝐹 : 𝐴 –onto→ ran 𝐹 ) ) |
13 |
5 12
|
mpbird |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ dom 𝐹 = 𝐴 ) → 𝐹 : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) |
14 |
1 13
|
mpdan |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) |