| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) |
| 2 |
|
frel |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Rel 𝐹 ) |
| 3 |
|
resdm |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 ) |
| 4 |
3
|
eqcomd |
⊢ ( Rel 𝐹 → 𝐹 = ( 𝐹 ↾ dom 𝐹 ) ) |
| 5 |
2 4
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 = ( 𝐹 ↾ dom 𝐹 ) ) |
| 6 |
|
reseq2 |
⊢ ( dom 𝐹 = 𝐴 → ( 𝐹 ↾ dom 𝐹 ) = ( 𝐹 ↾ 𝐴 ) ) |
| 7 |
5 6
|
sylan9eq |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ dom 𝐹 = 𝐴 ) → 𝐹 = ( 𝐹 ↾ 𝐴 ) ) |
| 8 |
1 7
|
mpdan |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 = ( 𝐹 ↾ 𝐴 ) ) |
| 9 |
|
ffun |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Fun 𝐹 ) |
| 10 |
|
eqimss2 |
⊢ ( dom 𝐹 = 𝐴 → 𝐴 ⊆ dom 𝐹 ) |
| 11 |
1 10
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐴 ⊆ dom 𝐹 ) |
| 12 |
9 11
|
jca |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐹 = ( 𝐹 ↾ 𝐴 ) ) → ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) ) |
| 14 |
|
fores |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐹 = ( 𝐹 ↾ 𝐴 ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) |
| 16 |
|
foeq1 |
⊢ ( 𝐹 = ( 𝐹 ↾ 𝐴 ) → ( 𝐹 : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐹 = ( 𝐹 ↾ 𝐴 ) ) → ( 𝐹 : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) ) |
| 18 |
15 17
|
mpbird |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐹 = ( 𝐹 ↾ 𝐴 ) ) → 𝐹 : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) |
| 19 |
8 18
|
mpdan |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) |