Metamath Proof Explorer


Theorem fimadmfoALT

Description: Alternate proof of fimadmfo , based on fores . A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fimadmfoALT ( 𝐹 : 𝐴𝐵𝐹 : 𝐴onto→ ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 fdm ( 𝐹 : 𝐴𝐵 → dom 𝐹 = 𝐴 )
2 frel ( 𝐹 : 𝐴𝐵 → Rel 𝐹 )
3 resdm ( Rel 𝐹 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 )
4 3 eqcomd ( Rel 𝐹𝐹 = ( 𝐹 ↾ dom 𝐹 ) )
5 2 4 syl ( 𝐹 : 𝐴𝐵𝐹 = ( 𝐹 ↾ dom 𝐹 ) )
6 reseq2 ( dom 𝐹 = 𝐴 → ( 𝐹 ↾ dom 𝐹 ) = ( 𝐹𝐴 ) )
7 5 6 sylan9eq ( ( 𝐹 : 𝐴𝐵 ∧ dom 𝐹 = 𝐴 ) → 𝐹 = ( 𝐹𝐴 ) )
8 1 7 mpdan ( 𝐹 : 𝐴𝐵𝐹 = ( 𝐹𝐴 ) )
9 ffun ( 𝐹 : 𝐴𝐵 → Fun 𝐹 )
10 eqimss2 ( dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹 )
11 1 10 syl ( 𝐹 : 𝐴𝐵𝐴 ⊆ dom 𝐹 )
12 9 11 jca ( 𝐹 : 𝐴𝐵 → ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) )
13 12 adantr ( ( 𝐹 : 𝐴𝐵𝐹 = ( 𝐹𝐴 ) ) → ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) )
14 fores ( ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝐹𝐴 ) : 𝐴onto→ ( 𝐹𝐴 ) )
15 13 14 syl ( ( 𝐹 : 𝐴𝐵𝐹 = ( 𝐹𝐴 ) ) → ( 𝐹𝐴 ) : 𝐴onto→ ( 𝐹𝐴 ) )
16 foeq1 ( 𝐹 = ( 𝐹𝐴 ) → ( 𝐹 : 𝐴onto→ ( 𝐹𝐴 ) ↔ ( 𝐹𝐴 ) : 𝐴onto→ ( 𝐹𝐴 ) ) )
17 16 adantl ( ( 𝐹 : 𝐴𝐵𝐹 = ( 𝐹𝐴 ) ) → ( 𝐹 : 𝐴onto→ ( 𝐹𝐴 ) ↔ ( 𝐹𝐴 ) : 𝐴onto→ ( 𝐹𝐴 ) ) )
18 15 17 mpbird ( ( 𝐹 : 𝐴𝐵𝐹 = ( 𝐹𝐴 ) ) → 𝐹 : 𝐴onto→ ( 𝐹𝐴 ) )
19 8 18 mpdan ( 𝐹 : 𝐴𝐵𝐹 : 𝐴onto→ ( 𝐹𝐴 ) )