| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  dom  𝐹  =  𝐴 ) | 
						
							| 2 |  | frel | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  Rel  𝐹 ) | 
						
							| 3 |  | resdm | ⊢ ( Rel  𝐹  →  ( 𝐹  ↾  dom  𝐹 )  =  𝐹 ) | 
						
							| 4 | 3 | eqcomd | ⊢ ( Rel  𝐹  →  𝐹  =  ( 𝐹  ↾  dom  𝐹 ) ) | 
						
							| 5 | 2 4 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  =  ( 𝐹  ↾  dom  𝐹 ) ) | 
						
							| 6 |  | reseq2 | ⊢ ( dom  𝐹  =  𝐴  →  ( 𝐹  ↾  dom  𝐹 )  =  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 7 | 5 6 | sylan9eq | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  dom  𝐹  =  𝐴 )  →  𝐹  =  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 8 | 1 7 | mpdan | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  =  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 9 |  | ffun | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  Fun  𝐹 ) | 
						
							| 10 |  | eqimss2 | ⊢ ( dom  𝐹  =  𝐴  →  𝐴  ⊆  dom  𝐹 ) | 
						
							| 11 | 1 10 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐴  ⊆  dom  𝐹 ) | 
						
							| 12 | 9 11 | jca | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( Fun  𝐹  ∧  𝐴  ⊆  dom  𝐹 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐹  =  ( 𝐹  ↾  𝐴 ) )  →  ( Fun  𝐹  ∧  𝐴  ⊆  dom  𝐹 ) ) | 
						
							| 14 |  | fores | ⊢ ( ( Fun  𝐹  ∧  𝐴  ⊆  dom  𝐹 )  →  ( 𝐹  ↾  𝐴 ) : 𝐴 –onto→ ( 𝐹  “  𝐴 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐹  =  ( 𝐹  ↾  𝐴 ) )  →  ( 𝐹  ↾  𝐴 ) : 𝐴 –onto→ ( 𝐹  “  𝐴 ) ) | 
						
							| 16 |  | foeq1 | ⊢ ( 𝐹  =  ( 𝐹  ↾  𝐴 )  →  ( 𝐹 : 𝐴 –onto→ ( 𝐹  “  𝐴 )  ↔  ( 𝐹  ↾  𝐴 ) : 𝐴 –onto→ ( 𝐹  “  𝐴 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐹  =  ( 𝐹  ↾  𝐴 ) )  →  ( 𝐹 : 𝐴 –onto→ ( 𝐹  “  𝐴 )  ↔  ( 𝐹  ↾  𝐴 ) : 𝐴 –onto→ ( 𝐹  “  𝐴 ) ) ) | 
						
							| 18 | 15 17 | mpbird | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐹  =  ( 𝐹  ↾  𝐴 ) )  →  𝐹 : 𝐴 –onto→ ( 𝐹  “  𝐴 ) ) | 
						
							| 19 | 8 18 | mpdan | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹 : 𝐴 –onto→ ( 𝐹  “  𝐴 ) ) |