Metamath Proof Explorer


Theorem fimaxre2

Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011) (Revised by Mario Carneiro, 13-Feb-2014)

Ref Expression
Assertion fimaxre2 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 rzal ( 𝐴 = ∅ → ∀ 𝑦𝐴 𝑦 ≤ 0 )
3 brralrspcev ( ( 0 ∈ ℝ ∧ ∀ 𝑦𝐴 𝑦 ≤ 0 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
4 1 2 3 sylancr ( 𝐴 = ∅ → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
5 4 a1i ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ( 𝐴 = ∅ → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) )
6 fimaxre ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 )
7 6 3expia ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ( 𝐴 ≠ ∅ → ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 ) )
8 ssrexv ( 𝐴 ⊆ ℝ → ( ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) )
9 8 adantr ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) )
10 7 9 syld ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) )
11 5 10 pm2.61dne ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )