| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fimin2g | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥 ) | 
						
							| 2 |  | nesym | ⊢ ( 𝑥  ≠  𝑦  ↔  ¬  𝑦  =  𝑥 ) | 
						
							| 3 | 2 | imbi1i | ⊢ ( ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  ↔  ( ¬  𝑦  =  𝑥  →  𝑥 𝑅 𝑦 ) ) | 
						
							| 4 |  | pm4.64 | ⊢ ( ( ¬  𝑦  =  𝑥  →  𝑥 𝑅 𝑦 )  ↔  ( 𝑦  =  𝑥  ∨  𝑥 𝑅 𝑦 ) ) | 
						
							| 5 | 3 4 | bitri | ⊢ ( ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  ↔  ( 𝑦  =  𝑥  ∨  𝑥 𝑅 𝑦 ) ) | 
						
							| 6 |  | sotric | ⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  →  ( 𝑦 𝑅 𝑥  ↔  ¬  ( 𝑦  =  𝑥  ∨  𝑥 𝑅 𝑦 ) ) ) | 
						
							| 7 | 6 | ancom2s | ⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑦 𝑅 𝑥  ↔  ¬  ( 𝑦  =  𝑥  ∨  𝑥 𝑅 𝑦 ) ) ) | 
						
							| 8 | 7 | con2bid | ⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( ( 𝑦  =  𝑥  ∨  𝑥 𝑅 𝑦 )  ↔  ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 9 | 5 8 | bitrid | ⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  ↔  ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 10 | 9 | anassrs | ⊢ ( ( ( 𝑅  Or  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  ↔  ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 11 | 10 | ralbidva | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  ↔  ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 12 | 11 | rexbidva | ⊢ ( 𝑅  Or  𝐴  →  ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 )  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 14 | 1 13 | mpbird | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  →  𝑥 𝑅 𝑦 ) ) |