Step |
Hyp |
Ref |
Expression |
1 |
|
ltso |
⊢ < Or ℝ |
2 |
|
soss |
⊢ ( 𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴 ) ) |
3 |
1 2
|
mpi |
⊢ ( 𝐴 ⊆ ℝ → < Or 𝐴 ) |
4 |
|
fiming |
⊢ ( ( < Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) ) |
5 |
3 4
|
syl3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) ) |
6 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
8 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
9 |
8
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
10 |
7 9
|
leloed |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ) ) |
11 |
|
orcom |
⊢ ( ( 𝑥 = 𝑦 ∨ 𝑥 < 𝑦 ) ↔ ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ) |
12 |
11
|
a1i |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 = 𝑦 ∨ 𝑥 < 𝑦 ) ↔ ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ) ) |
13 |
|
neor |
⊢ ( ( 𝑥 = 𝑦 ∨ 𝑥 < 𝑦 ) ↔ ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) ) |
14 |
13
|
a1i |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 = 𝑦 ∨ 𝑥 < 𝑦 ) ↔ ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) ) ) |
15 |
10 12 14
|
3bitr2d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) ) ) |
16 |
15
|
biimprd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) → 𝑥 ≤ 𝑦 ) ) |
17 |
16
|
ralimdva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) → ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
18 |
17
|
reximdva |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
19 |
18
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
20 |
5 19
|
mpd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |