| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red | ⊢ ( 𝐴  =  ∅  →  0  ∈  ℝ ) | 
						
							| 2 |  | rzal | ⊢ ( 𝐴  =  ∅  →  ∀ 𝑦  ∈  𝐴 0  ≤  𝑦 ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ≤  𝑦  ↔  0  ≤  𝑦 ) ) | 
						
							| 4 | 3 | ralbidv | ⊢ ( 𝑥  =  0  →  ( ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  ↔  ∀ 𝑦  ∈  𝐴 0  ≤  𝑦 ) ) | 
						
							| 5 | 4 | rspcev | ⊢ ( ( 0  ∈  ℝ  ∧  ∀ 𝑦  ∈  𝐴 0  ≤  𝑦 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) | 
						
							| 6 | 1 2 5 | syl2anc | ⊢ ( 𝐴  =  ∅  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ∈  Fin )  ∧  𝐴  =  ∅ )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) | 
						
							| 8 |  | neqne | ⊢ ( ¬  𝐴  =  ∅  →  𝐴  ≠  ∅ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ∈  Fin )  ∧  ¬  𝐴  =  ∅ )  →  𝐴  ≠  ∅ ) | 
						
							| 10 |  | simpll | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ∈  Fin )  ∧  𝐴  ≠  ∅ )  →  𝐴  ⊆  ℝ ) | 
						
							| 11 |  | simplr | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ∈  Fin )  ∧  𝐴  ≠  ∅ )  →  𝐴  ∈  Fin ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ∈  Fin )  ∧  𝐴  ≠  ∅ )  →  𝐴  ≠  ∅ ) | 
						
							| 13 |  | fiminre | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) | 
						
							| 14 | 10 11 12 13 | syl3anc | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ∈  Fin )  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) | 
						
							| 15 |  | ssrexv | ⊢ ( 𝐴  ⊆  ℝ  →  ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) ) | 
						
							| 16 | 10 14 15 | sylc | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ∈  Fin )  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) | 
						
							| 17 | 9 16 | syldan | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ∈  Fin )  ∧  ¬  𝐴  =  ∅ )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) | 
						
							| 18 | 7 17 | pm2.61dan | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ∈  Fin )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) |