Metamath Proof Explorer


Theorem fiminre2

Description: A nonempty finite set of real numbers is bounded below. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion fiminre2 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 )

Proof

Step Hyp Ref Expression
1 0red ( 𝐴 = ∅ → 0 ∈ ℝ )
2 rzal ( 𝐴 = ∅ → ∀ 𝑦𝐴 0 ≤ 𝑦 )
3 breq1 ( 𝑥 = 0 → ( 𝑥𝑦 ↔ 0 ≤ 𝑦 ) )
4 3 ralbidv ( 𝑥 = 0 → ( ∀ 𝑦𝐴 𝑥𝑦 ↔ ∀ 𝑦𝐴 0 ≤ 𝑦 ) )
5 4 rspcev ( ( 0 ∈ ℝ ∧ ∀ 𝑦𝐴 0 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 )
6 1 2 5 syl2anc ( 𝐴 = ∅ → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 )
7 6 adantl ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 = ∅ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 )
8 neqne ( ¬ 𝐴 = ∅ → 𝐴 ≠ ∅ )
9 8 adantl ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ ¬ 𝐴 = ∅ ) → 𝐴 ≠ ∅ )
10 simpll ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ ℝ )
11 simplr ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Fin )
12 simpr ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ )
13 fiminre ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 )
14 10 11 12 13 syl3anc ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 )
15 ssrexv ( 𝐴 ⊆ ℝ → ( ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 ) )
16 10 14 15 sylc ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 )
17 9 16 syldan ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 )
18 7 17 pm2.61dan ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 )