Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑏 ∈ V |
2 |
1
|
a1i |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → 𝑏 ∈ V ) |
3 |
|
isfin1-3 |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∈ Fin ↔ ◡ [⊊] Fr 𝒫 𝐴 ) ) |
4 |
3
|
ibi |
⊢ ( 𝐴 ∈ Fin → ◡ [⊊] Fr 𝒫 𝐴 ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ◡ [⊊] Fr 𝒫 𝐴 ) |
6 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 𝒫 𝐴 → 𝑏 ⊆ 𝒫 𝐴 ) |
7 |
6
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → 𝑏 ⊆ 𝒫 𝐴 ) |
8 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → 𝑏 ≠ ∅ ) |
9 |
|
fri |
⊢ ( ( ( 𝑏 ∈ V ∧ ◡ [⊊] Fr 𝒫 𝐴 ) ∧ ( 𝑏 ⊆ 𝒫 𝐴 ∧ 𝑏 ≠ ∅ ) ) → ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑑 ◡ [⊊] 𝑐 ) |
10 |
2 5 7 8 9
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑑 ◡ [⊊] 𝑐 ) |
11 |
|
vex |
⊢ 𝑑 ∈ V |
12 |
|
vex |
⊢ 𝑐 ∈ V |
13 |
11 12
|
brcnv |
⊢ ( 𝑑 ◡ [⊊] 𝑐 ↔ 𝑐 [⊊] 𝑑 ) |
14 |
11
|
brrpss |
⊢ ( 𝑐 [⊊] 𝑑 ↔ 𝑐 ⊊ 𝑑 ) |
15 |
13 14
|
bitri |
⊢ ( 𝑑 ◡ [⊊] 𝑐 ↔ 𝑐 ⊊ 𝑑 ) |
16 |
15
|
notbii |
⊢ ( ¬ 𝑑 ◡ [⊊] 𝑐 ↔ ¬ 𝑐 ⊊ 𝑑 ) |
17 |
16
|
ralbii |
⊢ ( ∀ 𝑑 ∈ 𝑏 ¬ 𝑑 ◡ [⊊] 𝑐 ↔ ∀ 𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ) |
18 |
17
|
rexbii |
⊢ ( ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑑 ◡ [⊊] 𝑐 ↔ ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ) |
19 |
10 18
|
sylib |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ) |
20 |
|
sorpssuni |
⊢ ( [⊊] Or 𝑏 → ( ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏 ) ) |
21 |
20
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ( ∃ 𝑐 ∈ 𝑏 ∀ 𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏 ) ) |
22 |
19 21
|
mpbid |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) ) → ∪ 𝑏 ∈ 𝑏 ) |
23 |
22
|
ex |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) → ( ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) → ∪ 𝑏 ∈ 𝑏 ) ) |
24 |
23
|
ralrimiva |
⊢ ( 𝐴 ∈ Fin → ∀ 𝑏 ∈ 𝒫 𝒫 𝐴 ( ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) → ∪ 𝑏 ∈ 𝑏 ) ) |
25 |
|
isfin2 |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∈ FinII ↔ ∀ 𝑏 ∈ 𝒫 𝒫 𝐴 ( ( 𝑏 ≠ ∅ ∧ [⊊] Or 𝑏 ) → ∪ 𝑏 ∈ 𝑏 ) ) ) |
26 |
24 25
|
mpbird |
⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ FinII ) |