Metamath Proof Explorer


Theorem fin12

Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin12 ( 𝐴 ∈ Fin → 𝐴 ∈ FinII )

Proof

Step Hyp Ref Expression
1 vex 𝑏 ∈ V
2 1 a1i ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [] Or 𝑏 ) ) → 𝑏 ∈ V )
3 isfin1-3 ( 𝐴 ∈ Fin → ( 𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴 ) )
4 3 ibi ( 𝐴 ∈ Fin → [] Fr 𝒫 𝐴 )
5 4 ad2antrr ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [] Or 𝑏 ) ) → [] Fr 𝒫 𝐴 )
6 elpwi ( 𝑏 ∈ 𝒫 𝒫 𝐴𝑏 ⊆ 𝒫 𝐴 )
7 6 ad2antlr ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [] Or 𝑏 ) ) → 𝑏 ⊆ 𝒫 𝐴 )
8 simprl ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [] Or 𝑏 ) ) → 𝑏 ≠ ∅ )
9 fri ( ( ( 𝑏 ∈ V ∧ [] Fr 𝒫 𝐴 ) ∧ ( 𝑏 ⊆ 𝒫 𝐴𝑏 ≠ ∅ ) ) → ∃ 𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐 )
10 2 5 7 8 9 syl22anc ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [] Or 𝑏 ) ) → ∃ 𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐 )
11 vex 𝑑 ∈ V
12 vex 𝑐 ∈ V
13 11 12 brcnv ( 𝑑 [] 𝑐𝑐 [] 𝑑 )
14 11 brrpss ( 𝑐 [] 𝑑𝑐𝑑 )
15 13 14 bitri ( 𝑑 [] 𝑐𝑐𝑑 )
16 15 notbii ( ¬ 𝑑 [] 𝑐 ↔ ¬ 𝑐𝑑 )
17 16 ralbii ( ∀ 𝑑𝑏 ¬ 𝑑 [] 𝑐 ↔ ∀ 𝑑𝑏 ¬ 𝑐𝑑 )
18 17 rexbii ( ∃ 𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐 ↔ ∃ 𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑 )
19 10 18 sylib ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [] Or 𝑏 ) ) → ∃ 𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑 )
20 sorpssuni ( [] Or 𝑏 → ( ∃ 𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑 𝑏𝑏 ) )
21 20 ad2antll ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [] Or 𝑏 ) ) → ( ∃ 𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑 𝑏𝑏 ) )
22 19 21 mpbid ( ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) ∧ ( 𝑏 ≠ ∅ ∧ [] Or 𝑏 ) ) → 𝑏𝑏 )
23 22 ex ( ( 𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴 ) → ( ( 𝑏 ≠ ∅ ∧ [] Or 𝑏 ) → 𝑏𝑏 ) )
24 23 ralrimiva ( 𝐴 ∈ Fin → ∀ 𝑏 ∈ 𝒫 𝒫 𝐴 ( ( 𝑏 ≠ ∅ ∧ [] Or 𝑏 ) → 𝑏𝑏 ) )
25 isfin2 ( 𝐴 ∈ Fin → ( 𝐴 ∈ FinII ↔ ∀ 𝑏 ∈ 𝒫 𝒫 𝐴 ( ( 𝑏 ≠ ∅ ∧ [] Or 𝑏 ) → 𝑏𝑏 ) ) )
26 24 25 mpbird ( 𝐴 ∈ Fin → 𝐴 ∈ FinII )