Metamath Proof Explorer


Theorem fin1a2

Description: Every Ia-finite set is II-finite. Theorem 1 of Levy58, p. 3. (Contributed by Stefan O'Rear, 8-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin1a2 ( 𝐴 ∈ FinIa𝐴 ∈ FinII )

Proof

Step Hyp Ref Expression
1 elpwi ( 𝑏 ∈ 𝒫 𝐴𝑏𝐴 )
2 fin1ai ( ( 𝐴 ∈ FinIa𝑏𝐴 ) → ( 𝑏 ∈ Fin ∨ ( 𝐴𝑏 ) ∈ Fin ) )
3 fin12 ( ( 𝐴𝑏 ) ∈ Fin → ( 𝐴𝑏 ) ∈ FinII )
4 3 orim2i ( ( 𝑏 ∈ Fin ∨ ( 𝐴𝑏 ) ∈ Fin ) → ( 𝑏 ∈ Fin ∨ ( 𝐴𝑏 ) ∈ FinII ) )
5 2 4 syl ( ( 𝐴 ∈ FinIa𝑏𝐴 ) → ( 𝑏 ∈ Fin ∨ ( 𝐴𝑏 ) ∈ FinII ) )
6 1 5 sylan2 ( ( 𝐴 ∈ FinIa𝑏 ∈ 𝒫 𝐴 ) → ( 𝑏 ∈ Fin ∨ ( 𝐴𝑏 ) ∈ FinII ) )
7 6 ralrimiva ( 𝐴 ∈ FinIa → ∀ 𝑏 ∈ 𝒫 𝐴 ( 𝑏 ∈ Fin ∨ ( 𝐴𝑏 ) ∈ FinII ) )
8 fin1a2s ( ( 𝐴 ∈ FinIa ∧ ∀ 𝑏 ∈ 𝒫 𝐴 ( 𝑏 ∈ Fin ∨ ( 𝐴𝑏 ) ∈ FinII ) ) → 𝐴 ∈ FinII )
9 7 8 mpdan ( 𝐴 ∈ FinIa𝐴 ∈ FinII )