Metamath Proof Explorer


Theorem fin1a2lem1

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis fin1a2lem.a 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 )
Assertion fin1a2lem1 ( 𝐴 ∈ On → ( 𝑆𝐴 ) = suc 𝐴 )

Proof

Step Hyp Ref Expression
1 fin1a2lem.a 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 )
2 suceloni ( 𝐴 ∈ On → suc 𝐴 ∈ On )
3 suceq ( 𝑎 = 𝐴 → suc 𝑎 = suc 𝐴 )
4 suceq ( 𝑥 = 𝑎 → suc 𝑥 = suc 𝑎 )
5 4 cbvmptv ( 𝑥 ∈ On ↦ suc 𝑥 ) = ( 𝑎 ∈ On ↦ suc 𝑎 )
6 1 5 eqtri 𝑆 = ( 𝑎 ∈ On ↦ suc 𝑎 )
7 3 6 fvmptg ( ( 𝐴 ∈ On ∧ suc 𝐴 ∈ On ) → ( 𝑆𝐴 ) = suc 𝐴 )
8 2 7 mpdan ( 𝐴 ∈ On → ( 𝑆𝐴 ) = suc 𝐴 )