Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin1a2lem.a | ⊢ 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 ) | |
| Assertion | fin1a2lem1 | ⊢ ( 𝐴 ∈ On → ( 𝑆 ‘ 𝐴 ) = suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.a | ⊢ 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 ) | |
| 2 | onsuc | ⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) | |
| 3 | suceq | ⊢ ( 𝑎 = 𝐴 → suc 𝑎 = suc 𝐴 ) | |
| 4 | suceq | ⊢ ( 𝑥 = 𝑎 → suc 𝑥 = suc 𝑎 ) | |
| 5 | 4 | cbvmptv | ⊢ ( 𝑥 ∈ On ↦ suc 𝑥 ) = ( 𝑎 ∈ On ↦ suc 𝑎 ) |
| 6 | 1 5 | eqtri | ⊢ 𝑆 = ( 𝑎 ∈ On ↦ suc 𝑎 ) |
| 7 | 3 6 | fvmptg | ⊢ ( ( 𝐴 ∈ On ∧ suc 𝐴 ∈ On ) → ( 𝑆 ‘ 𝐴 ) = suc 𝐴 ) |
| 8 | 2 7 | mpdan | ⊢ ( 𝐴 ∈ On → ( 𝑆 ‘ 𝐴 ) = suc 𝐴 ) |