| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqneqall | ⊢ ( 𝑎  =  ∅  →  ( 𝑎  ≠  ∅  →  (  [⊊]   Or  𝑎  →  ∪  𝑎  ∈  𝑎 ) ) ) | 
						
							| 2 |  | tru | ⊢ ⊤ | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑎  =  ∅  →  ⊤ ) | 
						
							| 4 | 1 3 | 2thd | ⊢ ( 𝑎  =  ∅  →  ( ( 𝑎  ≠  ∅  →  (  [⊊]   Or  𝑎  →  ∪  𝑎  ∈  𝑎 ) )  ↔  ⊤ ) ) | 
						
							| 5 |  | neeq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  ≠  ∅  ↔  𝑏  ≠  ∅ ) ) | 
						
							| 6 |  | soeq2 | ⊢ ( 𝑎  =  𝑏  →  (  [⊊]   Or  𝑎  ↔   [⊊]   Or  𝑏 ) ) | 
						
							| 7 |  | unieq | ⊢ ( 𝑎  =  𝑏  →  ∪  𝑎  =  ∪  𝑏 ) | 
						
							| 8 |  | id | ⊢ ( 𝑎  =  𝑏  →  𝑎  =  𝑏 ) | 
						
							| 9 | 7 8 | eleq12d | ⊢ ( 𝑎  =  𝑏  →  ( ∪  𝑎  ∈  𝑎  ↔  ∪  𝑏  ∈  𝑏 ) ) | 
						
							| 10 | 6 9 | imbi12d | ⊢ ( 𝑎  =  𝑏  →  ( (  [⊊]   Or  𝑎  →  ∪  𝑎  ∈  𝑎 )  ↔  (  [⊊]   Or  𝑏  →  ∪  𝑏  ∈  𝑏 ) ) ) | 
						
							| 11 | 5 10 | imbi12d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑎  ≠  ∅  →  (  [⊊]   Or  𝑎  →  ∪  𝑎  ∈  𝑎 ) )  ↔  ( 𝑏  ≠  ∅  →  (  [⊊]   Or  𝑏  →  ∪  𝑏  ∈  𝑏 ) ) ) ) | 
						
							| 12 |  | neeq1 | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑎  ≠  ∅  ↔  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ ) ) | 
						
							| 13 |  | soeq2 | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  (  [⊊]   Or  𝑎  ↔   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 14 |  | unieq | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ∪  𝑎  =  ∪  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 15 |  | id | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  𝑎  =  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 16 | 14 15 | eleq12d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ∪  𝑎  ∈  𝑎  ↔  ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 17 | 13 16 | imbi12d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( (  [⊊]   Or  𝑎  →  ∪  𝑎  ∈  𝑎 )  ↔  (  [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  →  ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) ) | 
						
							| 18 | 12 17 | imbi12d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ( 𝑎  ≠  ∅  →  (  [⊊]   Or  𝑎  →  ∪  𝑎  ∈  𝑎 ) )  ↔  ( ( 𝑏  ∪  { 𝑐 } )  ≠  ∅  →  (  [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  →  ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) ) ) | 
						
							| 19 |  | neeq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  ≠  ∅  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 20 |  | soeq2 | ⊢ ( 𝑎  =  𝐴  →  (  [⊊]   Or  𝑎  ↔   [⊊]   Or  𝐴 ) ) | 
						
							| 21 |  | unieq | ⊢ ( 𝑎  =  𝐴  →  ∪  𝑎  =  ∪  𝐴 ) | 
						
							| 22 |  | id | ⊢ ( 𝑎  =  𝐴  →  𝑎  =  𝐴 ) | 
						
							| 23 | 21 22 | eleq12d | ⊢ ( 𝑎  =  𝐴  →  ( ∪  𝑎  ∈  𝑎  ↔  ∪  𝐴  ∈  𝐴 ) ) | 
						
							| 24 | 20 23 | imbi12d | ⊢ ( 𝑎  =  𝐴  →  ( (  [⊊]   Or  𝑎  →  ∪  𝑎  ∈  𝑎 )  ↔  (  [⊊]   Or  𝐴  →  ∪  𝐴  ∈  𝐴 ) ) ) | 
						
							| 25 | 19 24 | imbi12d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑎  ≠  ∅  →  (  [⊊]   Or  𝑎  →  ∪  𝑎  ∈  𝑎 ) )  ↔  ( 𝐴  ≠  ∅  →  (  [⊊]   Or  𝐴  →  ∪  𝐴  ∈  𝐴 ) ) ) ) | 
						
							| 26 |  | unisnv | ⊢ ∪  { 𝑐 }  =  𝑐 | 
						
							| 27 |  | vsnid | ⊢ 𝑐  ∈  { 𝑐 } | 
						
							| 28 | 26 27 | eqeltri | ⊢ ∪  { 𝑐 }  ∈  { 𝑐 } | 
						
							| 29 |  | uneq1 | ⊢ ( 𝑏  =  ∅  →  ( 𝑏  ∪  { 𝑐 } )  =  ( ∅  ∪  { 𝑐 } ) ) | 
						
							| 30 |  | uncom | ⊢ ( ∅  ∪  { 𝑐 } )  =  ( { 𝑐 }  ∪  ∅ ) | 
						
							| 31 |  | un0 | ⊢ ( { 𝑐 }  ∪  ∅ )  =  { 𝑐 } | 
						
							| 32 | 30 31 | eqtri | ⊢ ( ∅  ∪  { 𝑐 } )  =  { 𝑐 } | 
						
							| 33 | 29 32 | eqtrdi | ⊢ ( 𝑏  =  ∅  →  ( 𝑏  ∪  { 𝑐 } )  =  { 𝑐 } ) | 
						
							| 34 | 33 | unieqd | ⊢ ( 𝑏  =  ∅  →  ∪  ( 𝑏  ∪  { 𝑐 } )  =  ∪  { 𝑐 } ) | 
						
							| 35 | 34 33 | eleq12d | ⊢ ( 𝑏  =  ∅  →  ( ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } )  ↔  ∪  { 𝑐 }  ∈  { 𝑐 } ) ) | 
						
							| 36 | 28 35 | mpbiri | ⊢ ( 𝑏  =  ∅  →  ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 37 | 36 | a1d | ⊢ ( 𝑏  =  ∅  →  ( ( 𝑏  ≠  ∅  →  (  [⊊]   Or  𝑏  →  ∪  𝑏  ∈  𝑏 ) )  →  ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  𝑏  =  ∅ )  →  ( ( 𝑏  ≠  ∅  →  (  [⊊]   Or  𝑏  →  ∪  𝑏  ∈  𝑏 ) )  →  ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 39 |  | simpr | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  𝑏  ≠  ∅ )  →  𝑏  ≠  ∅ ) | 
						
							| 40 |  | ssun1 | ⊢ 𝑏  ⊆  ( 𝑏  ∪  { 𝑐 } ) | 
						
							| 41 |  | simpl2 | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  𝑏  ≠  ∅ )  →   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 42 |  | soss | ⊢ ( 𝑏  ⊆  ( 𝑏  ∪  { 𝑐 } )  →  (  [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  →   [⊊]   Or  𝑏 ) ) | 
						
							| 43 | 40 41 42 | mpsyl | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  𝑏  ≠  ∅ )  →   [⊊]   Or  𝑏 ) | 
						
							| 44 |  | uniun | ⊢ ∪  ( 𝑏  ∪  { 𝑐 } )  =  ( ∪  𝑏  ∪  ∪  { 𝑐 } ) | 
						
							| 45 | 26 | uneq2i | ⊢ ( ∪  𝑏  ∪  ∪  { 𝑐 } )  =  ( ∪  𝑏  ∪  𝑐 ) | 
						
							| 46 | 44 45 | eqtri | ⊢ ∪  ( 𝑏  ∪  { 𝑐 } )  =  ( ∪  𝑏  ∪  𝑐 ) | 
						
							| 47 |  | simprr | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  ( 𝑏  ≠  ∅  ∧  ∪  𝑏  ∈  𝑏 ) )  →  ∪  𝑏  ∈  𝑏 ) | 
						
							| 48 |  | simpl2 | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  ( 𝑏  ≠  ∅  ∧  ∪  𝑏  ∈  𝑏 ) )  →   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 49 |  | elun1 | ⊢ ( ∪  𝑏  ∈  𝑏  →  ∪  𝑏  ∈  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 50 | 49 | ad2antll | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  ( 𝑏  ≠  ∅  ∧  ∪  𝑏  ∈  𝑏 ) )  →  ∪  𝑏  ∈  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 51 |  | ssun2 | ⊢ { 𝑐 }  ⊆  ( 𝑏  ∪  { 𝑐 } ) | 
						
							| 52 | 51 27 | sselii | ⊢ 𝑐  ∈  ( 𝑏  ∪  { 𝑐 } ) | 
						
							| 53 | 52 | a1i | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  ( 𝑏  ≠  ∅  ∧  ∪  𝑏  ∈  𝑏 ) )  →  𝑐  ∈  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 54 |  | sorpssi | ⊢ ( (  [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( ∪  𝑏  ∈  ( 𝑏  ∪  { 𝑐 } )  ∧  𝑐  ∈  ( 𝑏  ∪  { 𝑐 } ) ) )  →  ( ∪  𝑏  ⊆  𝑐  ∨  𝑐  ⊆  ∪  𝑏 ) ) | 
						
							| 55 | 48 50 53 54 | syl12anc | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  ( 𝑏  ≠  ∅  ∧  ∪  𝑏  ∈  𝑏 ) )  →  ( ∪  𝑏  ⊆  𝑐  ∨  𝑐  ⊆  ∪  𝑏 ) ) | 
						
							| 56 |  | ssequn1 | ⊢ ( ∪  𝑏  ⊆  𝑐  ↔  ( ∪  𝑏  ∪  𝑐 )  =  𝑐 ) | 
						
							| 57 | 52 | a1i | ⊢ ( ∪  𝑏  ∈  𝑏  →  𝑐  ∈  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 58 |  | eleq1 | ⊢ ( ( ∪  𝑏  ∪  𝑐 )  =  𝑐  →  ( ( ∪  𝑏  ∪  𝑐 )  ∈  ( 𝑏  ∪  { 𝑐 } )  ↔  𝑐  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 59 | 57 58 | imbitrrid | ⊢ ( ( ∪  𝑏  ∪  𝑐 )  =  𝑐  →  ( ∪  𝑏  ∈  𝑏  →  ( ∪  𝑏  ∪  𝑐 )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 60 | 56 59 | sylbi | ⊢ ( ∪  𝑏  ⊆  𝑐  →  ( ∪  𝑏  ∈  𝑏  →  ( ∪  𝑏  ∪  𝑐 )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 61 | 60 | impcom | ⊢ ( ( ∪  𝑏  ∈  𝑏  ∧  ∪  𝑏  ⊆  𝑐 )  →  ( ∪  𝑏  ∪  𝑐 )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 62 |  | uncom | ⊢ ( ∪  𝑏  ∪  𝑐 )  =  ( 𝑐  ∪  ∪  𝑏 ) | 
						
							| 63 |  | ssequn1 | ⊢ ( 𝑐  ⊆  ∪  𝑏  ↔  ( 𝑐  ∪  ∪  𝑏 )  =  ∪  𝑏 ) | 
						
							| 64 |  | eleq1 | ⊢ ( ( 𝑐  ∪  ∪  𝑏 )  =  ∪  𝑏  →  ( ( 𝑐  ∪  ∪  𝑏 )  ∈  ( 𝑏  ∪  { 𝑐 } )  ↔  ∪  𝑏  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 65 | 49 64 | imbitrrid | ⊢ ( ( 𝑐  ∪  ∪  𝑏 )  =  ∪  𝑏  →  ( ∪  𝑏  ∈  𝑏  →  ( 𝑐  ∪  ∪  𝑏 )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 66 | 63 65 | sylbi | ⊢ ( 𝑐  ⊆  ∪  𝑏  →  ( ∪  𝑏  ∈  𝑏  →  ( 𝑐  ∪  ∪  𝑏 )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 67 | 66 | impcom | ⊢ ( ( ∪  𝑏  ∈  𝑏  ∧  𝑐  ⊆  ∪  𝑏 )  →  ( 𝑐  ∪  ∪  𝑏 )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 68 | 62 67 | eqeltrid | ⊢ ( ( ∪  𝑏  ∈  𝑏  ∧  𝑐  ⊆  ∪  𝑏 )  →  ( ∪  𝑏  ∪  𝑐 )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 69 | 61 68 | jaodan | ⊢ ( ( ∪  𝑏  ∈  𝑏  ∧  ( ∪  𝑏  ⊆  𝑐  ∨  𝑐  ⊆  ∪  𝑏 ) )  →  ( ∪  𝑏  ∪  𝑐 )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 70 | 47 55 69 | syl2anc | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  ( 𝑏  ≠  ∅  ∧  ∪  𝑏  ∈  𝑏 ) )  →  ( ∪  𝑏  ∪  𝑐 )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 71 | 46 70 | eqeltrid | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  ( 𝑏  ≠  ∅  ∧  ∪  𝑏  ∈  𝑏 ) )  →  ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) | 
						
							| 72 | 71 | expr | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  𝑏  ≠  ∅ )  →  ( ∪  𝑏  ∈  𝑏  →  ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 73 | 43 72 | embantd | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  𝑏  ≠  ∅ )  →  ( (  [⊊]   Or  𝑏  →  ∪  𝑏  ∈  𝑏 )  →  ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 74 | 39 73 | embantd | ⊢ ( ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  ∧  𝑏  ≠  ∅ )  →  ( ( 𝑏  ≠  ∅  →  (  [⊊]   Or  𝑏  →  ∪  𝑏  ∈  𝑏 ) )  →  ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 75 | 38 74 | pm2.61dane | ⊢ ( ( 𝑏  ∈  Fin  ∧   [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  ∧  ( 𝑏  ∪  { 𝑐 } )  ≠  ∅ )  →  ( ( 𝑏  ≠  ∅  →  (  [⊊]   Or  𝑏  →  ∪  𝑏  ∈  𝑏 ) )  →  ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) | 
						
							| 76 | 75 | 3exp | ⊢ ( 𝑏  ∈  Fin  →  (  [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  →  ( ( 𝑏  ∪  { 𝑐 } )  ≠  ∅  →  ( ( 𝑏  ≠  ∅  →  (  [⊊]   Or  𝑏  →  ∪  𝑏  ∈  𝑏 ) )  →  ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) ) ) | 
						
							| 77 | 76 | com24 | ⊢ ( 𝑏  ∈  Fin  →  ( ( 𝑏  ≠  ∅  →  (  [⊊]   Or  𝑏  →  ∪  𝑏  ∈  𝑏 ) )  →  ( ( 𝑏  ∪  { 𝑐 } )  ≠  ∅  →  (  [⊊]   Or  ( 𝑏  ∪  { 𝑐 } )  →  ∪  ( 𝑏  ∪  { 𝑐 } )  ∈  ( 𝑏  ∪  { 𝑐 } ) ) ) ) ) | 
						
							| 78 | 4 11 18 25 2 77 | findcard2 | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ≠  ∅  →  (  [⊊]   Or  𝐴  →  ∪  𝐴  ∈  𝐴 ) ) ) | 
						
							| 79 | 78 | 3imp21 | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐴  ∈  Fin  ∧   [⊊]   Or  𝐴 )  →  ∪  𝐴  ∈  𝐴 ) |