Step |
Hyp |
Ref |
Expression |
1 |
|
eqneqall |
⊢ ( 𝑎 = ∅ → ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ) |
2 |
|
tru |
⊢ ⊤ |
3 |
2
|
a1i |
⊢ ( 𝑎 = ∅ → ⊤ ) |
4 |
1 3
|
2thd |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ↔ ⊤ ) ) |
5 |
|
neeq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ≠ ∅ ↔ 𝑏 ≠ ∅ ) ) |
6 |
|
soeq2 |
⊢ ( 𝑎 = 𝑏 → ( [⊊] Or 𝑎 ↔ [⊊] Or 𝑏 ) ) |
7 |
|
unieq |
⊢ ( 𝑎 = 𝑏 → ∪ 𝑎 = ∪ 𝑏 ) |
8 |
|
id |
⊢ ( 𝑎 = 𝑏 → 𝑎 = 𝑏 ) |
9 |
7 8
|
eleq12d |
⊢ ( 𝑎 = 𝑏 → ( ∪ 𝑎 ∈ 𝑎 ↔ ∪ 𝑏 ∈ 𝑏 ) ) |
10 |
6 9
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ↔ ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) ) |
11 |
5 10
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ↔ ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) ) ) |
12 |
|
neeq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ≠ ∅ ↔ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ) |
13 |
|
soeq2 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( [⊊] Or 𝑎 ↔ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ) ) |
14 |
|
unieq |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ∪ 𝑎 = ∪ ( 𝑏 ∪ { 𝑐 } ) ) |
15 |
|
id |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → 𝑎 = ( 𝑏 ∪ { 𝑐 } ) ) |
16 |
14 15
|
eleq12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ∪ 𝑎 ∈ 𝑎 ↔ ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
17 |
13 16
|
imbi12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ↔ ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) ) |
18 |
12 17
|
imbi12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ → ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) ) ) |
19 |
|
neeq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) |
20 |
|
soeq2 |
⊢ ( 𝑎 = 𝐴 → ( [⊊] Or 𝑎 ↔ [⊊] Or 𝐴 ) ) |
21 |
|
unieq |
⊢ ( 𝑎 = 𝐴 → ∪ 𝑎 = ∪ 𝐴 ) |
22 |
|
id |
⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 ) |
23 |
21 22
|
eleq12d |
⊢ ( 𝑎 = 𝐴 → ( ∪ 𝑎 ∈ 𝑎 ↔ ∪ 𝐴 ∈ 𝐴 ) ) |
24 |
20 23
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ↔ ( [⊊] Or 𝐴 → ∪ 𝐴 ∈ 𝐴 ) ) ) |
25 |
19 24
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ≠ ∅ → ( [⊊] Or 𝑎 → ∪ 𝑎 ∈ 𝑎 ) ) ↔ ( 𝐴 ≠ ∅ → ( [⊊] Or 𝐴 → ∪ 𝐴 ∈ 𝐴 ) ) ) ) |
26 |
|
vex |
⊢ 𝑐 ∈ V |
27 |
26
|
unisn |
⊢ ∪ { 𝑐 } = 𝑐 |
28 |
|
vsnid |
⊢ 𝑐 ∈ { 𝑐 } |
29 |
27 28
|
eqeltri |
⊢ ∪ { 𝑐 } ∈ { 𝑐 } |
30 |
|
uneq1 |
⊢ ( 𝑏 = ∅ → ( 𝑏 ∪ { 𝑐 } ) = ( ∅ ∪ { 𝑐 } ) ) |
31 |
|
uncom |
⊢ ( ∅ ∪ { 𝑐 } ) = ( { 𝑐 } ∪ ∅ ) |
32 |
|
un0 |
⊢ ( { 𝑐 } ∪ ∅ ) = { 𝑐 } |
33 |
31 32
|
eqtri |
⊢ ( ∅ ∪ { 𝑐 } ) = { 𝑐 } |
34 |
30 33
|
eqtrdi |
⊢ ( 𝑏 = ∅ → ( 𝑏 ∪ { 𝑐 } ) = { 𝑐 } ) |
35 |
34
|
unieqd |
⊢ ( 𝑏 = ∅ → ∪ ( 𝑏 ∪ { 𝑐 } ) = ∪ { 𝑐 } ) |
36 |
35 34
|
eleq12d |
⊢ ( 𝑏 = ∅ → ( ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ↔ ∪ { 𝑐 } ∈ { 𝑐 } ) ) |
37 |
29 36
|
mpbiri |
⊢ ( 𝑏 = ∅ → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
38 |
37
|
a1d |
⊢ ( 𝑏 = ∅ → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
39 |
38
|
adantl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 = ∅ ) → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
40 |
|
simpr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → 𝑏 ≠ ∅ ) |
41 |
|
ssun1 |
⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) |
42 |
|
simpl2 |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ) |
43 |
|
soss |
⊢ ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → [⊊] Or 𝑏 ) ) |
44 |
41 42 43
|
mpsyl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → [⊊] Or 𝑏 ) |
45 |
|
uniun |
⊢ ∪ ( 𝑏 ∪ { 𝑐 } ) = ( ∪ 𝑏 ∪ ∪ { 𝑐 } ) |
46 |
27
|
uneq2i |
⊢ ( ∪ 𝑏 ∪ ∪ { 𝑐 } ) = ( ∪ 𝑏 ∪ 𝑐 ) |
47 |
45 46
|
eqtri |
⊢ ∪ ( 𝑏 ∪ { 𝑐 } ) = ( ∪ 𝑏 ∪ 𝑐 ) |
48 |
|
simprr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ∪ 𝑏 ∈ 𝑏 ) |
49 |
|
simpl2 |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ) |
50 |
|
elun1 |
⊢ ( ∪ 𝑏 ∈ 𝑏 → ∪ 𝑏 ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
51 |
50
|
ad2antll |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ∪ 𝑏 ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
52 |
|
ssun2 |
⊢ { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) |
53 |
52 28
|
sselii |
⊢ 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) |
54 |
53
|
a1i |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
55 |
|
sorpssi |
⊢ ( ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( ∪ 𝑏 ∈ ( 𝑏 ∪ { 𝑐 } ) ∧ 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) → ( ∪ 𝑏 ⊆ 𝑐 ∨ 𝑐 ⊆ ∪ 𝑏 ) ) |
56 |
49 51 54 55
|
syl12anc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ( ∪ 𝑏 ⊆ 𝑐 ∨ 𝑐 ⊆ ∪ 𝑏 ) ) |
57 |
|
ssequn1 |
⊢ ( ∪ 𝑏 ⊆ 𝑐 ↔ ( ∪ 𝑏 ∪ 𝑐 ) = 𝑐 ) |
58 |
53
|
a1i |
⊢ ( ∪ 𝑏 ∈ 𝑏 → 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
59 |
|
eleq1 |
⊢ ( ( ∪ 𝑏 ∪ 𝑐 ) = 𝑐 → ( ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ↔ 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
60 |
58 59
|
syl5ibr |
⊢ ( ( ∪ 𝑏 ∪ 𝑐 ) = 𝑐 → ( ∪ 𝑏 ∈ 𝑏 → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
61 |
57 60
|
sylbi |
⊢ ( ∪ 𝑏 ⊆ 𝑐 → ( ∪ 𝑏 ∈ 𝑏 → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
62 |
61
|
impcom |
⊢ ( ( ∪ 𝑏 ∈ 𝑏 ∧ ∪ 𝑏 ⊆ 𝑐 ) → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
63 |
|
uncom |
⊢ ( ∪ 𝑏 ∪ 𝑐 ) = ( 𝑐 ∪ ∪ 𝑏 ) |
64 |
|
ssequn1 |
⊢ ( 𝑐 ⊆ ∪ 𝑏 ↔ ( 𝑐 ∪ ∪ 𝑏 ) = ∪ 𝑏 ) |
65 |
|
eleq1 |
⊢ ( ( 𝑐 ∪ ∪ 𝑏 ) = ∪ 𝑏 → ( ( 𝑐 ∪ ∪ 𝑏 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ↔ ∪ 𝑏 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
66 |
50 65
|
syl5ibr |
⊢ ( ( 𝑐 ∪ ∪ 𝑏 ) = ∪ 𝑏 → ( ∪ 𝑏 ∈ 𝑏 → ( 𝑐 ∪ ∪ 𝑏 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
67 |
64 66
|
sylbi |
⊢ ( 𝑐 ⊆ ∪ 𝑏 → ( ∪ 𝑏 ∈ 𝑏 → ( 𝑐 ∪ ∪ 𝑏 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
68 |
67
|
impcom |
⊢ ( ( ∪ 𝑏 ∈ 𝑏 ∧ 𝑐 ⊆ ∪ 𝑏 ) → ( 𝑐 ∪ ∪ 𝑏 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
69 |
63 68
|
eqeltrid |
⊢ ( ( ∪ 𝑏 ∈ 𝑏 ∧ 𝑐 ⊆ ∪ 𝑏 ) → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
70 |
62 69
|
jaodan |
⊢ ( ( ∪ 𝑏 ∈ 𝑏 ∧ ( ∪ 𝑏 ⊆ 𝑐 ∨ 𝑐 ⊆ ∪ 𝑏 ) ) → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
71 |
48 56 70
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ( ∪ 𝑏 ∪ 𝑐 ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
72 |
47 71
|
eqeltrid |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ ( 𝑏 ≠ ∅ ∧ ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
73 |
72
|
expr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → ( ∪ 𝑏 ∈ 𝑏 → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
74 |
44 73
|
embantd |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → ( ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
75 |
40 74
|
embantd |
⊢ ( ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) ∧ 𝑏 ≠ ∅ ) → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
76 |
39 75
|
pm2.61dane |
⊢ ( ( 𝑏 ∈ Fin ∧ [⊊] Or ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ ) → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) |
77 |
76
|
3exp |
⊢ ( 𝑏 ∈ Fin → ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) ) ) |
78 |
77
|
com24 |
⊢ ( 𝑏 ∈ Fin → ( ( 𝑏 ≠ ∅ → ( [⊊] Or 𝑏 → ∪ 𝑏 ∈ 𝑏 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ≠ ∅ → ( [⊊] Or ( 𝑏 ∪ { 𝑐 } ) → ∪ ( 𝑏 ∪ { 𝑐 } ) ∈ ( 𝑏 ∪ { 𝑐 } ) ) ) ) ) |
79 |
4 11 18 25 2 78
|
findcard2 |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≠ ∅ → ( [⊊] Or 𝐴 → ∪ 𝐴 ∈ 𝐴 ) ) ) |
80 |
79
|
3imp21 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ∧ [⊊] Or 𝐴 ) → ∪ 𝐴 ∈ 𝐴 ) |