| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( 𝑏  ∈  ω  ↦  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } )  =  ( 𝑏  ∈  ω  ↦  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) | 
						
							| 2 | 1 | rnmpt | ⊢ ran  ( 𝑏  ∈  ω  ↦  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } )  =  { 𝑑  ∣  ∃ 𝑏  ∈  ω 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } } | 
						
							| 3 |  | unieq | ⊢ ( { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  =  ∅  →  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  =  ∪  ∅ ) | 
						
							| 4 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 5 | 3 4 | eqtrdi | ⊢ ( { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  =  ∅  →  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  =  ∅ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑏  ∈  ω )  ∧  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  =  ∅ )  →  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  =  ∅ ) | 
						
							| 7 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 8 | 7 | elsn2 | ⊢ ( ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  { ∅ }  ↔  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  =  ∅ ) | 
						
							| 9 | 6 8 | sylibr | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑏  ∈  ω )  ∧  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  =  ∅ )  →  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  { ∅ } ) | 
						
							| 10 | 9 | olcd | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑏  ∈  ω )  ∧  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  =  ∅ )  →  ( ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  𝐴  ∨  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  { ∅ } ) ) | 
						
							| 11 |  | ssrab2 | ⊢ { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ⊆  𝐴 | 
						
							| 12 |  | simpr | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑏  ∈  ω )  ∧  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ≠  ∅ )  →  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ≠  ∅ ) | 
						
							| 13 |  | fin1a2lem9 | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin  ∧  𝑏  ∈  ω )  →  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  Fin ) | 
						
							| 14 | 13 | ad4ant123 | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑏  ∈  ω )  ∧  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ≠  ∅ )  →  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  Fin ) | 
						
							| 15 |  | simplll | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑏  ∈  ω )  ∧  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ≠  ∅ )  →   [⊊]   Or  𝐴 ) | 
						
							| 16 |  | soss | ⊢ ( { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ⊆  𝐴  →  (  [⊊]   Or  𝐴  →   [⊊]   Or  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) ) | 
						
							| 17 | 11 15 16 | mpsyl | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑏  ∈  ω )  ∧  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ≠  ∅ )  →   [⊊]   Or  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) | 
						
							| 18 |  | fin1a2lem10 | ⊢ ( ( { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ≠  ∅  ∧  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  Fin  ∧   [⊊]   Or  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } )  →  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) | 
						
							| 19 | 12 14 17 18 | syl3anc | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑏  ∈  ω )  ∧  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ≠  ∅ )  →  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) | 
						
							| 20 | 11 19 | sselid | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑏  ∈  ω )  ∧  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ≠  ∅ )  →  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  𝐴 ) | 
						
							| 21 | 20 | orcd | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑏  ∈  ω )  ∧  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ≠  ∅ )  →  ( ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  𝐴  ∨  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  { ∅ } ) ) | 
						
							| 22 | 10 21 | pm2.61dane | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑏  ∈  ω )  →  ( ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  𝐴  ∨  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  { ∅ } ) ) | 
						
							| 23 |  | eleq1 | ⊢ ( 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  →  ( 𝑑  ∈  𝐴  ↔  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  𝐴 ) ) | 
						
							| 24 |  | eleq1 | ⊢ ( 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  →  ( 𝑑  ∈  { ∅ }  ↔  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  { ∅ } ) ) | 
						
							| 25 | 23 24 | orbi12d | ⊢ ( 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  →  ( ( 𝑑  ∈  𝐴  ∨  𝑑  ∈  { ∅ } )  ↔  ( ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  𝐴  ∨  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ∈  { ∅ } ) ) ) | 
						
							| 26 | 22 25 | syl5ibrcom | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑏  ∈  ω )  →  ( 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  →  ( 𝑑  ∈  𝐴  ∨  𝑑  ∈  { ∅ } ) ) ) | 
						
							| 27 | 26 | rexlimdva | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  ( ∃ 𝑏  ∈  ω 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  →  ( 𝑑  ∈  𝐴  ∨  𝑑  ∈  { ∅ } ) ) ) | 
						
							| 28 |  | simpr | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  𝐴  ⊆  Fin ) | 
						
							| 29 | 28 | sselda | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  →  𝑑  ∈  Fin ) | 
						
							| 30 |  | ficardom | ⊢ ( 𝑑  ∈  Fin  →  ( card ‘ 𝑑 )  ∈  ω ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  →  ( card ‘ 𝑑 )  ∈  ω ) | 
						
							| 32 |  | breq1 | ⊢ ( 𝑐  =  𝑑  →  ( 𝑐  ≼  ( card ‘ 𝑑 )  ↔  𝑑  ≼  ( card ‘ 𝑑 ) ) ) | 
						
							| 33 |  | simpr | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  →  𝑑  ∈  𝐴 ) | 
						
							| 34 |  | ficardid | ⊢ ( 𝑑  ∈  Fin  →  ( card ‘ 𝑑 )  ≈  𝑑 ) | 
						
							| 35 | 29 34 | syl | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  →  ( card ‘ 𝑑 )  ≈  𝑑 ) | 
						
							| 36 |  | ensym | ⊢ ( ( card ‘ 𝑑 )  ≈  𝑑  →  𝑑  ≈  ( card ‘ 𝑑 ) ) | 
						
							| 37 |  | endom | ⊢ ( 𝑑  ≈  ( card ‘ 𝑑 )  →  𝑑  ≼  ( card ‘ 𝑑 ) ) | 
						
							| 38 | 35 36 37 | 3syl | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  →  𝑑  ≼  ( card ‘ 𝑑 ) ) | 
						
							| 39 | 32 33 38 | elrabd | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  →  𝑑  ∈  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) } ) | 
						
							| 40 |  | elssuni | ⊢ ( 𝑑  ∈  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) }  →  𝑑  ⊆  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) } ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  →  𝑑  ⊆  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) } ) | 
						
							| 42 |  | breq1 | ⊢ ( 𝑐  =  𝑏  →  ( 𝑐  ≼  ( card ‘ 𝑑 )  ↔  𝑏  ≼  ( card ‘ 𝑑 ) ) ) | 
						
							| 43 | 42 | elrab | ⊢ ( 𝑏  ∈  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) }  ↔  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) ) ) | 
						
							| 44 |  | simprr | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) ) )  →  𝑏  ≼  ( card ‘ 𝑑 ) ) | 
						
							| 45 | 35 | adantr | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) ) )  →  ( card ‘ 𝑑 )  ≈  𝑑 ) | 
						
							| 46 |  | domentr | ⊢ ( ( 𝑏  ≼  ( card ‘ 𝑑 )  ∧  ( card ‘ 𝑑 )  ≈  𝑑 )  →  𝑏  ≼  𝑑 ) | 
						
							| 47 | 44 45 46 | syl2anc | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) ) )  →  𝑏  ≼  𝑑 ) | 
						
							| 48 |  | simpllr | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) ) )  →  𝐴  ⊆  Fin ) | 
						
							| 49 |  | simprl | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) ) )  →  𝑏  ∈  𝐴 ) | 
						
							| 50 | 48 49 | sseldd | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) ) )  →  𝑏  ∈  Fin ) | 
						
							| 51 | 29 | adantr | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) ) )  →  𝑑  ∈  Fin ) | 
						
							| 52 |  | simplll | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) ) )  →   [⊊]   Or  𝐴 ) | 
						
							| 53 |  | simplr | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) ) )  →  𝑑  ∈  𝐴 ) | 
						
							| 54 |  | sorpssi | ⊢ ( (  [⊊]   Or  𝐴  ∧  ( 𝑏  ∈  𝐴  ∧  𝑑  ∈  𝐴 ) )  →  ( 𝑏  ⊆  𝑑  ∨  𝑑  ⊆  𝑏 ) ) | 
						
							| 55 | 52 49 53 54 | syl12anc | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) ) )  →  ( 𝑏  ⊆  𝑑  ∨  𝑑  ⊆  𝑏 ) ) | 
						
							| 56 |  | fincssdom | ⊢ ( ( 𝑏  ∈  Fin  ∧  𝑑  ∈  Fin  ∧  ( 𝑏  ⊆  𝑑  ∨  𝑑  ⊆  𝑏 ) )  →  ( 𝑏  ≼  𝑑  ↔  𝑏  ⊆  𝑑 ) ) | 
						
							| 57 | 50 51 55 56 | syl3anc | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) ) )  →  ( 𝑏  ≼  𝑑  ↔  𝑏  ⊆  𝑑 ) ) | 
						
							| 58 | 47 57 | mpbid | ⊢ ( ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) ) )  →  𝑏  ⊆  𝑑 ) | 
						
							| 59 | 58 | ex | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  →  ( ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ( card ‘ 𝑑 ) )  →  𝑏  ⊆  𝑑 ) ) | 
						
							| 60 | 43 59 | biimtrid | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  →  ( 𝑏  ∈  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) }  →  𝑏  ⊆  𝑑 ) ) | 
						
							| 61 | 60 | ralrimiv | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  →  ∀ 𝑏  ∈  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) } 𝑏  ⊆  𝑑 ) | 
						
							| 62 |  | unissb | ⊢ ( ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) }  ⊆  𝑑  ↔  ∀ 𝑏  ∈  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) } 𝑏  ⊆  𝑑 ) | 
						
							| 63 | 61 62 | sylibr | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  →  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) }  ⊆  𝑑 ) | 
						
							| 64 | 41 63 | eqssd | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  →  𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) } ) | 
						
							| 65 |  | breq2 | ⊢ ( 𝑏  =  ( card ‘ 𝑑 )  →  ( 𝑐  ≼  𝑏  ↔  𝑐  ≼  ( card ‘ 𝑑 ) ) ) | 
						
							| 66 | 65 | rabbidv | ⊢ ( 𝑏  =  ( card ‘ 𝑑 )  →  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  =  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) } ) | 
						
							| 67 | 66 | unieqd | ⊢ ( 𝑏  =  ( card ‘ 𝑑 )  →  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) } ) | 
						
							| 68 | 67 | rspceeqv | ⊢ ( ( ( card ‘ 𝑑 )  ∈  ω  ∧  𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ( card ‘ 𝑑 ) } )  →  ∃ 𝑏  ∈  ω 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) | 
						
							| 69 | 31 64 68 | syl2anc | ⊢ ( ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  ∧  𝑑  ∈  𝐴 )  →  ∃ 𝑏  ∈  ω 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) | 
						
							| 70 | 69 | ex | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  ( 𝑑  ∈  𝐴  →  ∃ 𝑏  ∈  ω 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) ) | 
						
							| 71 |  | velsn | ⊢ ( 𝑑  ∈  { ∅ }  ↔  𝑑  =  ∅ ) | 
						
							| 72 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 73 |  | dom0 | ⊢ ( 𝑏  ≼  ∅  ↔  𝑏  =  ∅ ) | 
						
							| 74 | 73 | biimpi | ⊢ ( 𝑏  ≼  ∅  →  𝑏  =  ∅ ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ∅ )  →  𝑏  =  ∅ ) | 
						
							| 76 | 75 | a1i | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  ( ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ∅ )  →  𝑏  =  ∅ ) ) | 
						
							| 77 |  | breq1 | ⊢ ( 𝑐  =  𝑏  →  ( 𝑐  ≼  ∅  ↔  𝑏  ≼  ∅ ) ) | 
						
							| 78 | 77 | elrab | ⊢ ( 𝑏  ∈  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ∅ }  ↔  ( 𝑏  ∈  𝐴  ∧  𝑏  ≼  ∅ ) ) | 
						
							| 79 |  | velsn | ⊢ ( 𝑏  ∈  { ∅ }  ↔  𝑏  =  ∅ ) | 
						
							| 80 | 76 78 79 | 3imtr4g | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  ( 𝑏  ∈  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ∅ }  →  𝑏  ∈  { ∅ } ) ) | 
						
							| 81 | 80 | ssrdv | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ∅ }  ⊆  { ∅ } ) | 
						
							| 82 |  | uni0b | ⊢ ( ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ∅ }  =  ∅  ↔  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ∅ }  ⊆  { ∅ } ) | 
						
							| 83 | 81 82 | sylibr | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ∅ }  =  ∅ ) | 
						
							| 84 | 83 | eqcomd | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  ∅  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ∅ } ) | 
						
							| 85 |  | breq2 | ⊢ ( 𝑏  =  ∅  →  ( 𝑐  ≼  𝑏  ↔  𝑐  ≼  ∅ ) ) | 
						
							| 86 | 85 | rabbidv | ⊢ ( 𝑏  =  ∅  →  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  =  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ∅ } ) | 
						
							| 87 | 86 | unieqd | ⊢ ( 𝑏  =  ∅  →  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ∅ } ) | 
						
							| 88 | 87 | rspceeqv | ⊢ ( ( ∅  ∈  ω  ∧  ∅  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  ∅ } )  →  ∃ 𝑏  ∈  ω ∅  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) | 
						
							| 89 | 72 84 88 | sylancr | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  ∃ 𝑏  ∈  ω ∅  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) | 
						
							| 90 |  | eqeq1 | ⊢ ( 𝑑  =  ∅  →  ( 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ↔  ∅  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) ) | 
						
							| 91 | 90 | rexbidv | ⊢ ( 𝑑  =  ∅  →  ( ∃ 𝑏  ∈  ω 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ↔  ∃ 𝑏  ∈  ω ∅  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) ) | 
						
							| 92 | 89 91 | syl5ibrcom | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  ( 𝑑  =  ∅  →  ∃ 𝑏  ∈  ω 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) ) | 
						
							| 93 | 71 92 | biimtrid | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  ( 𝑑  ∈  { ∅ }  →  ∃ 𝑏  ∈  ω 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) ) | 
						
							| 94 | 70 93 | jaod | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  ( ( 𝑑  ∈  𝐴  ∨  𝑑  ∈  { ∅ } )  →  ∃ 𝑏  ∈  ω 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } ) ) | 
						
							| 95 | 27 94 | impbid | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  ( ∃ 𝑏  ∈  ω 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ↔  ( 𝑑  ∈  𝐴  ∨  𝑑  ∈  { ∅ } ) ) ) | 
						
							| 96 |  | elun | ⊢ ( 𝑑  ∈  ( 𝐴  ∪  { ∅ } )  ↔  ( 𝑑  ∈  𝐴  ∨  𝑑  ∈  { ∅ } ) ) | 
						
							| 97 | 95 96 | bitr4di | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  ( ∃ 𝑏  ∈  ω 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 }  ↔  𝑑  ∈  ( 𝐴  ∪  { ∅ } ) ) ) | 
						
							| 98 | 97 | eqabcdv | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  { 𝑑  ∣  ∃ 𝑏  ∈  ω 𝑑  =  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } }  =  ( 𝐴  ∪  { ∅ } ) ) | 
						
							| 99 | 2 98 | eqtrid | ⊢ ( (  [⊊]   Or  𝐴  ∧  𝐴  ⊆  Fin )  →  ran  ( 𝑏  ∈  ω  ↦  ∪  { 𝑐  ∈  𝐴  ∣  𝑐  ≼  𝑏 } )  =  ( 𝐴  ∪  { ∅ } ) ) |