Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝑏 ∈ ω ↦ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) = ( 𝑏 ∈ ω ↦ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
2 |
1
|
rnmpt |
⊢ ran ( 𝑏 ∈ ω ↦ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) = { 𝑑 ∣ ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } } |
3 |
|
unieq |
⊢ ( { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∪ ∅ ) |
4 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
5 |
3 4
|
eqtrdi |
⊢ ( { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ ) |
6 |
5
|
adantl |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ ) |
7 |
|
0ex |
⊢ ∅ ∈ V |
8 |
7
|
elsn2 |
⊢ ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ↔ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ ) |
9 |
6 8
|
sylibr |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ) |
10 |
9
|
olcd |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ ) → ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ 𝐴 ∨ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ) ) |
11 |
|
ssrab2 |
⊢ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ⊆ 𝐴 |
12 |
|
simpr |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) |
13 |
|
fin1a2lem9 |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ∧ 𝑏 ∈ ω ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ Fin ) |
14 |
13
|
ad4ant123 |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ Fin ) |
15 |
|
simplll |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → [⊊] Or 𝐴 ) |
16 |
|
soss |
⊢ ( { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ⊆ 𝐴 → ( [⊊] Or 𝐴 → [⊊] Or { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) |
17 |
11 15 16
|
mpsyl |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → [⊊] Or { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
18 |
|
fin1a2lem10 |
⊢ ( ( { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ Fin ∧ [⊊] Or { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
19 |
12 14 17 18
|
syl3anc |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
20 |
11 19
|
sselid |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ 𝐴 ) |
21 |
20
|
orcd |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ 𝐴 ∨ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ) ) |
22 |
10 21
|
pm2.61dane |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) → ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ 𝐴 ∨ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ) ) |
23 |
|
eleq1 |
⊢ ( 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } → ( 𝑑 ∈ 𝐴 ↔ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ 𝐴 ) ) |
24 |
|
eleq1 |
⊢ ( 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } → ( 𝑑 ∈ { ∅ } ↔ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ) ) |
25 |
23 24
|
orbi12d |
⊢ ( 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } → ( ( 𝑑 ∈ 𝐴 ∨ 𝑑 ∈ { ∅ } ) ↔ ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ 𝐴 ∨ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ) ) ) |
26 |
22 25
|
syl5ibrcom |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) → ( 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } → ( 𝑑 ∈ 𝐴 ∨ 𝑑 ∈ { ∅ } ) ) ) |
27 |
26
|
rexlimdva |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } → ( 𝑑 ∈ 𝐴 ∨ 𝑑 ∈ { ∅ } ) ) ) |
28 |
|
simpr |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝐴 ⊆ Fin ) |
29 |
28
|
sselda |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → 𝑑 ∈ Fin ) |
30 |
|
ficardom |
⊢ ( 𝑑 ∈ Fin → ( card ‘ 𝑑 ) ∈ ω ) |
31 |
29 30
|
syl |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ( card ‘ 𝑑 ) ∈ ω ) |
32 |
|
breq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ≼ ( card ‘ 𝑑 ) ↔ 𝑑 ≼ ( card ‘ 𝑑 ) ) ) |
33 |
|
simpr |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → 𝑑 ∈ 𝐴 ) |
34 |
|
ficardid |
⊢ ( 𝑑 ∈ Fin → ( card ‘ 𝑑 ) ≈ 𝑑 ) |
35 |
29 34
|
syl |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ( card ‘ 𝑑 ) ≈ 𝑑 ) |
36 |
|
ensym |
⊢ ( ( card ‘ 𝑑 ) ≈ 𝑑 → 𝑑 ≈ ( card ‘ 𝑑 ) ) |
37 |
|
endom |
⊢ ( 𝑑 ≈ ( card ‘ 𝑑 ) → 𝑑 ≼ ( card ‘ 𝑑 ) ) |
38 |
35 36 37
|
3syl |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → 𝑑 ≼ ( card ‘ 𝑑 ) ) |
39 |
32 33 38
|
elrabd |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → 𝑑 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) |
40 |
|
elssuni |
⊢ ( 𝑑 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } → 𝑑 ⊆ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) |
41 |
39 40
|
syl |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → 𝑑 ⊆ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) |
42 |
|
breq1 |
⊢ ( 𝑐 = 𝑏 → ( 𝑐 ≼ ( card ‘ 𝑑 ) ↔ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) |
43 |
42
|
elrab |
⊢ ( 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ↔ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) |
44 |
|
simprr |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑏 ≼ ( card ‘ 𝑑 ) ) |
45 |
35
|
adantr |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → ( card ‘ 𝑑 ) ≈ 𝑑 ) |
46 |
|
domentr |
⊢ ( ( 𝑏 ≼ ( card ‘ 𝑑 ) ∧ ( card ‘ 𝑑 ) ≈ 𝑑 ) → 𝑏 ≼ 𝑑 ) |
47 |
44 45 46
|
syl2anc |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑏 ≼ 𝑑 ) |
48 |
|
simpllr |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝐴 ⊆ Fin ) |
49 |
|
simprl |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑏 ∈ 𝐴 ) |
50 |
48 49
|
sseldd |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑏 ∈ Fin ) |
51 |
29
|
adantr |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑑 ∈ Fin ) |
52 |
|
simplll |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → [⊊] Or 𝐴 ) |
53 |
|
simplr |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑑 ∈ 𝐴 ) |
54 |
|
sorpssi |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( 𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏 ) ) |
55 |
52 49 53 54
|
syl12anc |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → ( 𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏 ) ) |
56 |
|
fincssdom |
⊢ ( ( 𝑏 ∈ Fin ∧ 𝑑 ∈ Fin ∧ ( 𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏 ) ) → ( 𝑏 ≼ 𝑑 ↔ 𝑏 ⊆ 𝑑 ) ) |
57 |
50 51 55 56
|
syl3anc |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → ( 𝑏 ≼ 𝑑 ↔ 𝑏 ⊆ 𝑑 ) ) |
58 |
47 57
|
mpbid |
⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑏 ⊆ 𝑑 ) |
59 |
58
|
ex |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) → 𝑏 ⊆ 𝑑 ) ) |
60 |
43 59
|
syl5bi |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ( 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } → 𝑏 ⊆ 𝑑 ) ) |
61 |
60
|
ralrimiv |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ∀ 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } 𝑏 ⊆ 𝑑 ) |
62 |
|
unissb |
⊢ ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ⊆ 𝑑 ↔ ∀ 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } 𝑏 ⊆ 𝑑 ) |
63 |
61 62
|
sylibr |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ⊆ 𝑑 ) |
64 |
41 63
|
eqssd |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) |
65 |
|
breq2 |
⊢ ( 𝑏 = ( card ‘ 𝑑 ) → ( 𝑐 ≼ 𝑏 ↔ 𝑐 ≼ ( card ‘ 𝑑 ) ) ) |
66 |
65
|
rabbidv |
⊢ ( 𝑏 = ( card ‘ 𝑑 ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) |
67 |
66
|
unieqd |
⊢ ( 𝑏 = ( card ‘ 𝑑 ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) |
68 |
67
|
rspceeqv |
⊢ ( ( ( card ‘ 𝑑 ) ∈ ω ∧ 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) → ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
69 |
31 64 68
|
syl2anc |
⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
70 |
69
|
ex |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑑 ∈ 𝐴 → ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) |
71 |
|
velsn |
⊢ ( 𝑑 ∈ { ∅ } ↔ 𝑑 = ∅ ) |
72 |
|
peano1 |
⊢ ∅ ∈ ω |
73 |
|
dom0 |
⊢ ( 𝑏 ≼ ∅ ↔ 𝑏 = ∅ ) |
74 |
73
|
biimpi |
⊢ ( 𝑏 ≼ ∅ → 𝑏 = ∅ ) |
75 |
74
|
adantl |
⊢ ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅ ) → 𝑏 = ∅ ) |
76 |
75
|
a1i |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅ ) → 𝑏 = ∅ ) ) |
77 |
|
breq1 |
⊢ ( 𝑐 = 𝑏 → ( 𝑐 ≼ ∅ ↔ 𝑏 ≼ ∅ ) ) |
78 |
77
|
elrab |
⊢ ( 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ↔ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅ ) ) |
79 |
|
velsn |
⊢ ( 𝑏 ∈ { ∅ } ↔ 𝑏 = ∅ ) |
80 |
76 78 79
|
3imtr4g |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } → 𝑏 ∈ { ∅ } ) ) |
81 |
80
|
ssrdv |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ⊆ { ∅ } ) |
82 |
|
uni0b |
⊢ ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } = ∅ ↔ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ⊆ { ∅ } ) |
83 |
81 82
|
sylibr |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } = ∅ ) |
84 |
83
|
eqcomd |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ∅ = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ) |
85 |
|
breq2 |
⊢ ( 𝑏 = ∅ → ( 𝑐 ≼ 𝑏 ↔ 𝑐 ≼ ∅ ) ) |
86 |
85
|
rabbidv |
⊢ ( 𝑏 = ∅ → { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ) |
87 |
86
|
unieqd |
⊢ ( 𝑏 = ∅ → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ) |
88 |
87
|
rspceeqv |
⊢ ( ( ∅ ∈ ω ∧ ∅ = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ) → ∃ 𝑏 ∈ ω ∅ = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
89 |
72 84 88
|
sylancr |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ∃ 𝑏 ∈ ω ∅ = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
90 |
|
eqeq1 |
⊢ ( 𝑑 = ∅ → ( 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ↔ ∅ = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) |
91 |
90
|
rexbidv |
⊢ ( 𝑑 = ∅ → ( ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ↔ ∃ 𝑏 ∈ ω ∅ = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) |
92 |
89 91
|
syl5ibrcom |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑑 = ∅ → ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) |
93 |
71 92
|
syl5bi |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑑 ∈ { ∅ } → ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) |
94 |
70 93
|
jaod |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( ( 𝑑 ∈ 𝐴 ∨ 𝑑 ∈ { ∅ } ) → ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) |
95 |
27 94
|
impbid |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ↔ ( 𝑑 ∈ 𝐴 ∨ 𝑑 ∈ { ∅ } ) ) ) |
96 |
|
elun |
⊢ ( 𝑑 ∈ ( 𝐴 ∪ { ∅ } ) ↔ ( 𝑑 ∈ 𝐴 ∨ 𝑑 ∈ { ∅ } ) ) |
97 |
95 96
|
bitr4di |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ↔ 𝑑 ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
98 |
97
|
abbi1dv |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → { 𝑑 ∣ ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } } = ( 𝐴 ∪ { ∅ } ) ) |
99 |
2 98
|
eqtrid |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ran ( 𝑏 ∈ ω ↦ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) = ( 𝐴 ∪ { ∅ } ) ) |