Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ( 𝐵 ∖ 𝐶 ) ∈ FinII ) |
2 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → 𝐴 ⊆ 𝒫 𝐵 ) |
3 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ 𝒫 𝐵 ) |
4 |
3
|
elpwid |
⊢ ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ⊆ 𝐵 ) |
5 |
4
|
ssdifd |
⊢ ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝐵 ∖ 𝐶 ) ) |
6 |
|
sseq1 |
⊢ ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( 𝑓 ⊆ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝐵 ∖ 𝐶 ) ) ) |
7 |
5 6
|
syl5ibrcom |
⊢ ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → 𝑓 ⊆ ( 𝐵 ∖ 𝐶 ) ) ) |
8 |
7
|
rexlimdva |
⊢ ( 𝐴 ⊆ 𝒫 𝐵 → ( ∃ 𝑔 ∈ 𝐴 𝑓 = ( 𝑔 ∖ 𝐶 ) → 𝑓 ⊆ ( 𝐵 ∖ 𝐶 ) ) ) |
9 |
|
eqid |
⊢ ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) |
10 |
9
|
elrnmpt |
⊢ ( 𝑓 ∈ V → ( 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 𝑓 = ( 𝑔 ∖ 𝐶 ) ) ) |
11 |
10
|
elv |
⊢ ( 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 𝑓 = ( 𝑔 ∖ 𝐶 ) ) |
12 |
|
velpw |
⊢ ( 𝑓 ∈ 𝒫 ( 𝐵 ∖ 𝐶 ) ↔ 𝑓 ⊆ ( 𝐵 ∖ 𝐶 ) ) |
13 |
8 11 12
|
3imtr4g |
⊢ ( 𝐴 ⊆ 𝒫 𝐵 → ( 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → 𝑓 ∈ 𝒫 ( 𝐵 ∖ 𝐶 ) ) ) |
14 |
13
|
ssrdv |
⊢ ( 𝐴 ⊆ 𝒫 𝐵 → ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ⊆ 𝒫 ( 𝐵 ∖ 𝐶 ) ) |
15 |
2 14
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ⊆ 𝒫 ( 𝐵 ∖ 𝐶 ) ) |
16 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → 𝐶 ∈ 𝐴 ) |
17 |
|
difid |
⊢ ( 𝐶 ∖ 𝐶 ) = ∅ |
18 |
17
|
eqcomi |
⊢ ∅ = ( 𝐶 ∖ 𝐶 ) |
19 |
|
difeq1 |
⊢ ( 𝑔 = 𝐶 → ( 𝑔 ∖ 𝐶 ) = ( 𝐶 ∖ 𝐶 ) ) |
20 |
19
|
rspceeqv |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∅ = ( 𝐶 ∖ 𝐶 ) ) → ∃ 𝑔 ∈ 𝐴 ∅ = ( 𝑔 ∖ 𝐶 ) ) |
21 |
18 20
|
mpan2 |
⊢ ( 𝐶 ∈ 𝐴 → ∃ 𝑔 ∈ 𝐴 ∅ = ( 𝑔 ∖ 𝐶 ) ) |
22 |
|
0ex |
⊢ ∅ ∈ V |
23 |
9
|
elrnmpt |
⊢ ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ∅ = ( 𝑔 ∖ 𝐶 ) ) ) |
24 |
22 23
|
ax-mp |
⊢ ( ∅ ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ∅ = ( 𝑔 ∖ 𝐶 ) ) |
25 |
21 24
|
sylibr |
⊢ ( 𝐶 ∈ 𝐴 → ∅ ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
26 |
|
ne0i |
⊢ ( ∅ ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ≠ ∅ ) |
27 |
16 25 26
|
3syl |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ≠ ∅ ) |
28 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → [⊊] Or 𝐴 ) |
29 |
9
|
elrnmpt |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 𝑥 = ( 𝑔 ∖ 𝐶 ) ) ) |
30 |
29
|
elv |
⊢ ( 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 𝑥 = ( 𝑔 ∖ 𝐶 ) ) |
31 |
|
difeq1 |
⊢ ( 𝑔 = 𝑒 → ( 𝑔 ∖ 𝐶 ) = ( 𝑒 ∖ 𝐶 ) ) |
32 |
31
|
eqeq2d |
⊢ ( 𝑔 = 𝑒 → ( 𝑥 = ( 𝑔 ∖ 𝐶 ) ↔ 𝑥 = ( 𝑒 ∖ 𝐶 ) ) ) |
33 |
32
|
cbvrexvw |
⊢ ( ∃ 𝑔 ∈ 𝐴 𝑥 = ( 𝑔 ∖ 𝐶 ) ↔ ∃ 𝑒 ∈ 𝐴 𝑥 = ( 𝑒 ∖ 𝐶 ) ) |
34 |
|
sorpssi |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ) → ( 𝑒 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑒 ) ) |
35 |
|
ssdif |
⊢ ( 𝑒 ⊆ 𝑔 → ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ) |
36 |
|
ssdif |
⊢ ( 𝑔 ⊆ 𝑒 → ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) |
37 |
35 36
|
orim12i |
⊢ ( ( 𝑒 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑒 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ∨ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) ) |
38 |
34 37
|
syl |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ∨ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) ) |
39 |
|
sseq2 |
⊢ ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ↔ ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ) ) |
40 |
|
sseq1 |
⊢ ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ↔ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) ) |
41 |
39 40
|
orbi12d |
⊢ ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ↔ ( ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ∨ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
42 |
38 41
|
syl5ibrcom |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ) → ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
43 |
42
|
expr |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ( 𝑔 ∈ 𝐴 → ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) ) |
44 |
43
|
rexlimdv |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ( ∃ 𝑔 ∈ 𝐴 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
45 |
11 44
|
syl5bi |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ( 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
46 |
45
|
ralrimiv |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) |
47 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ( 𝑥 ⊆ 𝑓 ↔ ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ) ) |
48 |
|
sseq2 |
⊢ ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ( 𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) |
49 |
47 48
|
orbi12d |
⊢ ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ( ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ↔ ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
50 |
49
|
ralbidv |
⊢ ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ( ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ↔ ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
51 |
46 50
|
syl5ibrcom |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) ) |
52 |
51
|
rexlimdva |
⊢ ( [⊊] Or 𝐴 → ( ∃ 𝑒 ∈ 𝐴 𝑥 = ( 𝑒 ∖ 𝐶 ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) ) |
53 |
33 52
|
syl5bi |
⊢ ( [⊊] Or 𝐴 → ( ∃ 𝑔 ∈ 𝐴 𝑥 = ( 𝑔 ∖ 𝐶 ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) ) |
54 |
30 53
|
syl5bi |
⊢ ( [⊊] Or 𝐴 → ( 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) ) |
55 |
54
|
ralrimiv |
⊢ ( [⊊] Or 𝐴 → ∀ 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) |
56 |
|
sorpss |
⊢ ( [⊊] Or ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∀ 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) |
57 |
55 56
|
sylibr |
⊢ ( [⊊] Or 𝐴 → [⊊] Or ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
58 |
28 57
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → [⊊] Or ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
59 |
|
fin2i |
⊢ ( ( ( ( 𝐵 ∖ 𝐶 ) ∈ FinII ∧ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ⊆ 𝒫 ( 𝐵 ∖ 𝐶 ) ) ∧ ( ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ≠ ∅ ∧ [⊊] Or ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
60 |
1 15 27 58 59
|
syl22anc |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
61 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ¬ ∪ 𝐴 ∈ 𝐴 ) |
62 |
|
difeq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 ∖ 𝐶 ) = ( 𝑓 ∖ 𝐶 ) ) |
63 |
62
|
cbvmptv |
⊢ ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∈ 𝐴 ↦ ( 𝑓 ∖ 𝐶 ) ) |
64 |
63
|
elrnmpt |
⊢ ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑓 ∈ 𝐴 ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) |
65 |
64
|
ibi |
⊢ ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ∃ 𝑓 ∈ 𝐴 ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) |
66 |
|
eqid |
⊢ ( ℎ ∖ 𝐶 ) = ( ℎ ∖ 𝐶 ) |
67 |
|
difeq1 |
⊢ ( 𝑔 = ℎ → ( 𝑔 ∖ 𝐶 ) = ( ℎ ∖ 𝐶 ) ) |
68 |
67
|
rspceeqv |
⊢ ( ( ℎ ∈ 𝐴 ∧ ( ℎ ∖ 𝐶 ) = ( ℎ ∖ 𝐶 ) ) → ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
69 |
66 68
|
mpan2 |
⊢ ( ℎ ∈ 𝐴 → ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
70 |
69
|
adantl |
⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
71 |
|
vex |
⊢ ℎ ∈ V |
72 |
|
difexg |
⊢ ( ℎ ∈ V → ( ℎ ∖ 𝐶 ) ∈ V ) |
73 |
9
|
elrnmpt |
⊢ ( ( ℎ ∖ 𝐶 ) ∈ V → ( ( ℎ ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) ) |
74 |
71 72 73
|
mp2b |
⊢ ( ( ℎ ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
75 |
70 74
|
sylibr |
⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ( ℎ ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
76 |
|
elssuni |
⊢ ( ( ℎ ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ( ℎ ∖ 𝐶 ) ⊆ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
77 |
75 76
|
syl |
⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ( ℎ ∖ 𝐶 ) ⊆ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
78 |
|
simplr |
⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) |
79 |
77 78
|
sseqtrd |
⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ( ℎ ∖ 𝐶 ) ⊆ ( 𝑓 ∖ 𝐶 ) ) |
80 |
79
|
adantll |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( ℎ ∖ 𝐶 ) ⊆ ( 𝑓 ∖ 𝐶 ) ) |
81 |
|
unss2 |
⊢ ( ( ℎ ∖ 𝐶 ) ⊆ ( 𝑓 ∖ 𝐶 ) → ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) ⊆ ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) ) |
82 |
|
uncom |
⊢ ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) = ( ( ℎ ∖ 𝐶 ) ∪ 𝐶 ) |
83 |
|
undif1 |
⊢ ( ( ℎ ∖ 𝐶 ) ∪ 𝐶 ) = ( ℎ ∪ 𝐶 ) |
84 |
82 83
|
eqtri |
⊢ ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) = ( ℎ ∪ 𝐶 ) |
85 |
84
|
a1i |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) = ( ℎ ∪ 𝐶 ) ) |
86 |
61
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ¬ ∪ 𝐴 ∈ 𝐴 ) |
87 |
16
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) |
88 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) |
89 |
|
eqeq1 |
⊢ ( 𝑒 = ( 𝑥 ∖ 𝐶 ) → ( 𝑒 = ∅ ↔ ( 𝑥 ∖ 𝐶 ) = ∅ ) ) |
90 |
|
simpllr |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) |
91 |
|
ssdif0 |
⊢ ( 𝑓 ⊆ 𝐶 ↔ ( 𝑓 ∖ 𝐶 ) = ∅ ) |
92 |
91
|
biimpi |
⊢ ( 𝑓 ⊆ 𝐶 → ( 𝑓 ∖ 𝐶 ) = ∅ ) |
93 |
92
|
ad2antlr |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ∖ 𝐶 ) = ∅ ) |
94 |
90 93
|
eqtrd |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ∅ ) |
95 |
|
uni0c |
⊢ ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ∅ ↔ ∀ 𝑒 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) 𝑒 = ∅ ) |
96 |
94 95
|
sylib |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑒 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) 𝑒 = ∅ ) |
97 |
|
eqid |
⊢ ( 𝑥 ∖ 𝐶 ) = ( 𝑥 ∖ 𝐶 ) |
98 |
|
difeq1 |
⊢ ( 𝑔 = 𝑥 → ( 𝑔 ∖ 𝐶 ) = ( 𝑥 ∖ 𝐶 ) ) |
99 |
98
|
rspceeqv |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∖ 𝐶 ) = ( 𝑥 ∖ 𝐶 ) ) → ∃ 𝑔 ∈ 𝐴 ( 𝑥 ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
100 |
97 99
|
mpan2 |
⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑔 ∈ 𝐴 ( 𝑥 ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
101 |
|
vex |
⊢ 𝑥 ∈ V |
102 |
|
difexg |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∖ 𝐶 ) ∈ V ) |
103 |
9
|
elrnmpt |
⊢ ( ( 𝑥 ∖ 𝐶 ) ∈ V → ( ( 𝑥 ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ( 𝑥 ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) ) |
104 |
101 102 103
|
mp2b |
⊢ ( ( 𝑥 ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ( 𝑥 ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
105 |
100 104
|
sylibr |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
106 |
105
|
adantl |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
107 |
89 96 106
|
rspcdva |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∖ 𝐶 ) = ∅ ) |
108 |
|
ssdif0 |
⊢ ( 𝑥 ⊆ 𝐶 ↔ ( 𝑥 ∖ 𝐶 ) = ∅ ) |
109 |
107 108
|
sylibr |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ⊆ 𝐶 ) |
110 |
109
|
ralrimiva |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐶 ) |
111 |
|
unissb |
⊢ ( ∪ 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐶 ) |
112 |
110 111
|
sylibr |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → ∪ 𝐴 ⊆ 𝐶 ) |
113 |
|
elssuni |
⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ⊆ ∪ 𝐴 ) |
114 |
113
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → 𝐶 ⊆ ∪ 𝐴 ) |
115 |
112 114
|
eqssd |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → ∪ 𝐴 = 𝐶 ) |
116 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → 𝐶 ∈ 𝐴 ) |
117 |
115 116
|
eqeltrd |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → ∪ 𝐴 ∈ 𝐴 ) |
118 |
117
|
ex |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) → ( 𝑓 ⊆ 𝐶 → ∪ 𝐴 ∈ 𝐴 ) ) |
119 |
87 88 118
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( 𝑓 ⊆ 𝐶 → ∪ 𝐴 ∈ 𝐴 ) ) |
120 |
86 119
|
mtod |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ¬ 𝑓 ⊆ 𝐶 ) |
121 |
28
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → [⊊] Or 𝐴 ) |
122 |
|
simplrl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → 𝑓 ∈ 𝐴 ) |
123 |
|
sorpssi |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑓 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓 ) ) |
124 |
121 122 87 123
|
syl12anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( 𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓 ) ) |
125 |
|
orel1 |
⊢ ( ¬ 𝑓 ⊆ 𝐶 → ( ( 𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓 ) → 𝐶 ⊆ 𝑓 ) ) |
126 |
120 124 125
|
sylc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → 𝐶 ⊆ 𝑓 ) |
127 |
|
undif |
⊢ ( 𝐶 ⊆ 𝑓 ↔ ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) = 𝑓 ) |
128 |
126 127
|
sylib |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) = 𝑓 ) |
129 |
85 128
|
sseq12d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) ⊆ ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) ↔ ( ℎ ∪ 𝐶 ) ⊆ 𝑓 ) ) |
130 |
|
ssun1 |
⊢ ℎ ⊆ ( ℎ ∪ 𝐶 ) |
131 |
|
sstr |
⊢ ( ( ℎ ⊆ ( ℎ ∪ 𝐶 ) ∧ ( ℎ ∪ 𝐶 ) ⊆ 𝑓 ) → ℎ ⊆ 𝑓 ) |
132 |
130 131
|
mpan |
⊢ ( ( ℎ ∪ 𝐶 ) ⊆ 𝑓 → ℎ ⊆ 𝑓 ) |
133 |
129 132
|
syl6bi |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) ⊆ ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) → ℎ ⊆ 𝑓 ) ) |
134 |
81 133
|
syl5 |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( ( ℎ ∖ 𝐶 ) ⊆ ( 𝑓 ∖ 𝐶 ) → ℎ ⊆ 𝑓 ) ) |
135 |
80 134
|
mpd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ℎ ⊆ 𝑓 ) |
136 |
135
|
ralrimiva |
⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → ∀ ℎ ∈ 𝐴 ℎ ⊆ 𝑓 ) |
137 |
|
unissb |
⊢ ( ∪ 𝐴 ⊆ 𝑓 ↔ ∀ ℎ ∈ 𝐴 ℎ ⊆ 𝑓 ) |
138 |
136 137
|
sylibr |
⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → ∪ 𝐴 ⊆ 𝑓 ) |
139 |
|
elssuni |
⊢ ( 𝑓 ∈ 𝐴 → 𝑓 ⊆ ∪ 𝐴 ) |
140 |
139
|
ad2antrl |
⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → 𝑓 ⊆ ∪ 𝐴 ) |
141 |
138 140
|
eqssd |
⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → ∪ 𝐴 = 𝑓 ) |
142 |
|
simprl |
⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → 𝑓 ∈ 𝐴 ) |
143 |
141 142
|
eqeltrd |
⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → ∪ 𝐴 ∈ 𝐴 ) |
144 |
143
|
rexlimdvaa |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ( ∃ 𝑓 ∈ 𝐴 ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) → ∪ 𝐴 ∈ 𝐴 ) ) |
145 |
65 144
|
syl5 |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ∪ 𝐴 ∈ 𝐴 ) ) |
146 |
61 145
|
mtod |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ¬ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
147 |
60 146
|
pm2.65da |
⊢ ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) → ¬ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) |