| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ( 𝐵 ∖ 𝐶 ) ∈ FinII ) |
| 2 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → 𝐴 ⊆ 𝒫 𝐵 ) |
| 3 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ 𝒫 𝐵 ) |
| 4 |
3
|
elpwid |
⊢ ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ⊆ 𝐵 ) |
| 5 |
4
|
ssdifd |
⊢ ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝐵 ∖ 𝐶 ) ) |
| 6 |
|
sseq1 |
⊢ ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( 𝑓 ⊆ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝐵 ∖ 𝐶 ) ) ) |
| 7 |
5 6
|
syl5ibrcom |
⊢ ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → 𝑓 ⊆ ( 𝐵 ∖ 𝐶 ) ) ) |
| 8 |
7
|
rexlimdva |
⊢ ( 𝐴 ⊆ 𝒫 𝐵 → ( ∃ 𝑔 ∈ 𝐴 𝑓 = ( 𝑔 ∖ 𝐶 ) → 𝑓 ⊆ ( 𝐵 ∖ 𝐶 ) ) ) |
| 9 |
|
eqid |
⊢ ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) |
| 10 |
9
|
elrnmpt |
⊢ ( 𝑓 ∈ V → ( 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 𝑓 = ( 𝑔 ∖ 𝐶 ) ) ) |
| 11 |
10
|
elv |
⊢ ( 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 𝑓 = ( 𝑔 ∖ 𝐶 ) ) |
| 12 |
|
velpw |
⊢ ( 𝑓 ∈ 𝒫 ( 𝐵 ∖ 𝐶 ) ↔ 𝑓 ⊆ ( 𝐵 ∖ 𝐶 ) ) |
| 13 |
8 11 12
|
3imtr4g |
⊢ ( 𝐴 ⊆ 𝒫 𝐵 → ( 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → 𝑓 ∈ 𝒫 ( 𝐵 ∖ 𝐶 ) ) ) |
| 14 |
13
|
ssrdv |
⊢ ( 𝐴 ⊆ 𝒫 𝐵 → ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ⊆ 𝒫 ( 𝐵 ∖ 𝐶 ) ) |
| 15 |
2 14
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ⊆ 𝒫 ( 𝐵 ∖ 𝐶 ) ) |
| 16 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → 𝐶 ∈ 𝐴 ) |
| 17 |
|
difid |
⊢ ( 𝐶 ∖ 𝐶 ) = ∅ |
| 18 |
17
|
eqcomi |
⊢ ∅ = ( 𝐶 ∖ 𝐶 ) |
| 19 |
|
difeq1 |
⊢ ( 𝑔 = 𝐶 → ( 𝑔 ∖ 𝐶 ) = ( 𝐶 ∖ 𝐶 ) ) |
| 20 |
19
|
rspceeqv |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∅ = ( 𝐶 ∖ 𝐶 ) ) → ∃ 𝑔 ∈ 𝐴 ∅ = ( 𝑔 ∖ 𝐶 ) ) |
| 21 |
18 20
|
mpan2 |
⊢ ( 𝐶 ∈ 𝐴 → ∃ 𝑔 ∈ 𝐴 ∅ = ( 𝑔 ∖ 𝐶 ) ) |
| 22 |
|
0ex |
⊢ ∅ ∈ V |
| 23 |
9
|
elrnmpt |
⊢ ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ∅ = ( 𝑔 ∖ 𝐶 ) ) ) |
| 24 |
22 23
|
ax-mp |
⊢ ( ∅ ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ∅ = ( 𝑔 ∖ 𝐶 ) ) |
| 25 |
21 24
|
sylibr |
⊢ ( 𝐶 ∈ 𝐴 → ∅ ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 26 |
|
ne0i |
⊢ ( ∅ ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ≠ ∅ ) |
| 27 |
16 25 26
|
3syl |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ≠ ∅ ) |
| 28 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → [⊊] Or 𝐴 ) |
| 29 |
9
|
elrnmpt |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 𝑥 = ( 𝑔 ∖ 𝐶 ) ) ) |
| 30 |
29
|
elv |
⊢ ( 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 𝑥 = ( 𝑔 ∖ 𝐶 ) ) |
| 31 |
|
difeq1 |
⊢ ( 𝑔 = 𝑒 → ( 𝑔 ∖ 𝐶 ) = ( 𝑒 ∖ 𝐶 ) ) |
| 32 |
31
|
eqeq2d |
⊢ ( 𝑔 = 𝑒 → ( 𝑥 = ( 𝑔 ∖ 𝐶 ) ↔ 𝑥 = ( 𝑒 ∖ 𝐶 ) ) ) |
| 33 |
32
|
cbvrexvw |
⊢ ( ∃ 𝑔 ∈ 𝐴 𝑥 = ( 𝑔 ∖ 𝐶 ) ↔ ∃ 𝑒 ∈ 𝐴 𝑥 = ( 𝑒 ∖ 𝐶 ) ) |
| 34 |
|
sorpssi |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ) → ( 𝑒 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑒 ) ) |
| 35 |
|
ssdif |
⊢ ( 𝑒 ⊆ 𝑔 → ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ) |
| 36 |
|
ssdif |
⊢ ( 𝑔 ⊆ 𝑒 → ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) |
| 37 |
35 36
|
orim12i |
⊢ ( ( 𝑒 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑒 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ∨ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) ) |
| 38 |
34 37
|
syl |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ∨ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) ) |
| 39 |
|
sseq2 |
⊢ ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ↔ ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ) ) |
| 40 |
|
sseq1 |
⊢ ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ↔ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) ) |
| 41 |
39 40
|
orbi12d |
⊢ ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ↔ ( ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ∨ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
| 42 |
38 41
|
syl5ibrcom |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ) → ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
| 43 |
42
|
expr |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ( 𝑔 ∈ 𝐴 → ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) ) |
| 44 |
43
|
rexlimdv |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ( ∃ 𝑔 ∈ 𝐴 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
| 45 |
11 44
|
biimtrid |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ( 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
| 46 |
45
|
ralrimiv |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) |
| 47 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ( 𝑥 ⊆ 𝑓 ↔ ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ) ) |
| 48 |
|
sseq2 |
⊢ ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ( 𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) |
| 49 |
47 48
|
orbi12d |
⊢ ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ( ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ↔ ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
| 50 |
49
|
ralbidv |
⊢ ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ( ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ↔ ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
| 51 |
46 50
|
syl5ibrcom |
⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) ) |
| 52 |
51
|
rexlimdva |
⊢ ( [⊊] Or 𝐴 → ( ∃ 𝑒 ∈ 𝐴 𝑥 = ( 𝑒 ∖ 𝐶 ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) ) |
| 53 |
33 52
|
biimtrid |
⊢ ( [⊊] Or 𝐴 → ( ∃ 𝑔 ∈ 𝐴 𝑥 = ( 𝑔 ∖ 𝐶 ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) ) |
| 54 |
30 53
|
biimtrid |
⊢ ( [⊊] Or 𝐴 → ( 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) ) |
| 55 |
54
|
ralrimiv |
⊢ ( [⊊] Or 𝐴 → ∀ 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) |
| 56 |
|
sorpss |
⊢ ( [⊊] Or ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∀ 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) |
| 57 |
55 56
|
sylibr |
⊢ ( [⊊] Or 𝐴 → [⊊] Or ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 58 |
28 57
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → [⊊] Or ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 59 |
|
fin2i |
⊢ ( ( ( ( 𝐵 ∖ 𝐶 ) ∈ FinII ∧ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ⊆ 𝒫 ( 𝐵 ∖ 𝐶 ) ) ∧ ( ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ≠ ∅ ∧ [⊊] Or ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 60 |
1 15 27 58 59
|
syl22anc |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 61 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ¬ ∪ 𝐴 ∈ 𝐴 ) |
| 62 |
|
difeq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 ∖ 𝐶 ) = ( 𝑓 ∖ 𝐶 ) ) |
| 63 |
62
|
cbvmptv |
⊢ ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∈ 𝐴 ↦ ( 𝑓 ∖ 𝐶 ) ) |
| 64 |
63
|
elrnmpt |
⊢ ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑓 ∈ 𝐴 ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) |
| 65 |
64
|
ibi |
⊢ ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ∃ 𝑓 ∈ 𝐴 ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) |
| 66 |
|
eqid |
⊢ ( ℎ ∖ 𝐶 ) = ( ℎ ∖ 𝐶 ) |
| 67 |
|
difeq1 |
⊢ ( 𝑔 = ℎ → ( 𝑔 ∖ 𝐶 ) = ( ℎ ∖ 𝐶 ) ) |
| 68 |
67
|
rspceeqv |
⊢ ( ( ℎ ∈ 𝐴 ∧ ( ℎ ∖ 𝐶 ) = ( ℎ ∖ 𝐶 ) ) → ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 69 |
66 68
|
mpan2 |
⊢ ( ℎ ∈ 𝐴 → ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 70 |
69
|
adantl |
⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 71 |
|
vex |
⊢ ℎ ∈ V |
| 72 |
|
difexg |
⊢ ( ℎ ∈ V → ( ℎ ∖ 𝐶 ) ∈ V ) |
| 73 |
9
|
elrnmpt |
⊢ ( ( ℎ ∖ 𝐶 ) ∈ V → ( ( ℎ ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) ) |
| 74 |
71 72 73
|
mp2b |
⊢ ( ( ℎ ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 75 |
70 74
|
sylibr |
⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ( ℎ ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 76 |
|
elssuni |
⊢ ( ( ℎ ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ( ℎ ∖ 𝐶 ) ⊆ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 77 |
75 76
|
syl |
⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ( ℎ ∖ 𝐶 ) ⊆ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 78 |
|
simplr |
⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) |
| 79 |
77 78
|
sseqtrd |
⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ( ℎ ∖ 𝐶 ) ⊆ ( 𝑓 ∖ 𝐶 ) ) |
| 80 |
79
|
adantll |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( ℎ ∖ 𝐶 ) ⊆ ( 𝑓 ∖ 𝐶 ) ) |
| 81 |
|
unss2 |
⊢ ( ( ℎ ∖ 𝐶 ) ⊆ ( 𝑓 ∖ 𝐶 ) → ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) ⊆ ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) ) |
| 82 |
|
uncom |
⊢ ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) = ( ( ℎ ∖ 𝐶 ) ∪ 𝐶 ) |
| 83 |
|
undif1 |
⊢ ( ( ℎ ∖ 𝐶 ) ∪ 𝐶 ) = ( ℎ ∪ 𝐶 ) |
| 84 |
82 83
|
eqtri |
⊢ ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) = ( ℎ ∪ 𝐶 ) |
| 85 |
84
|
a1i |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) = ( ℎ ∪ 𝐶 ) ) |
| 86 |
61
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ¬ ∪ 𝐴 ∈ 𝐴 ) |
| 87 |
16
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) |
| 88 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) |
| 89 |
|
eqeq1 |
⊢ ( 𝑒 = ( 𝑥 ∖ 𝐶 ) → ( 𝑒 = ∅ ↔ ( 𝑥 ∖ 𝐶 ) = ∅ ) ) |
| 90 |
|
simpllr |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) |
| 91 |
|
ssdif0 |
⊢ ( 𝑓 ⊆ 𝐶 ↔ ( 𝑓 ∖ 𝐶 ) = ∅ ) |
| 92 |
91
|
biimpi |
⊢ ( 𝑓 ⊆ 𝐶 → ( 𝑓 ∖ 𝐶 ) = ∅ ) |
| 93 |
92
|
ad2antlr |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ∖ 𝐶 ) = ∅ ) |
| 94 |
90 93
|
eqtrd |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ∅ ) |
| 95 |
|
uni0c |
⊢ ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ∅ ↔ ∀ 𝑒 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) 𝑒 = ∅ ) |
| 96 |
94 95
|
sylib |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑒 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) 𝑒 = ∅ ) |
| 97 |
|
eqid |
⊢ ( 𝑥 ∖ 𝐶 ) = ( 𝑥 ∖ 𝐶 ) |
| 98 |
|
difeq1 |
⊢ ( 𝑔 = 𝑥 → ( 𝑔 ∖ 𝐶 ) = ( 𝑥 ∖ 𝐶 ) ) |
| 99 |
98
|
rspceeqv |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∖ 𝐶 ) = ( 𝑥 ∖ 𝐶 ) ) → ∃ 𝑔 ∈ 𝐴 ( 𝑥 ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 100 |
97 99
|
mpan2 |
⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑔 ∈ 𝐴 ( 𝑥 ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 101 |
|
vex |
⊢ 𝑥 ∈ V |
| 102 |
|
difexg |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∖ 𝐶 ) ∈ V ) |
| 103 |
9
|
elrnmpt |
⊢ ( ( 𝑥 ∖ 𝐶 ) ∈ V → ( ( 𝑥 ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ( 𝑥 ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) ) |
| 104 |
101 102 103
|
mp2b |
⊢ ( ( 𝑥 ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ( 𝑥 ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 105 |
100 104
|
sylibr |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 106 |
105
|
adantl |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 107 |
89 96 106
|
rspcdva |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∖ 𝐶 ) = ∅ ) |
| 108 |
|
ssdif0 |
⊢ ( 𝑥 ⊆ 𝐶 ↔ ( 𝑥 ∖ 𝐶 ) = ∅ ) |
| 109 |
107 108
|
sylibr |
⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ⊆ 𝐶 ) |
| 110 |
109
|
ralrimiva |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐶 ) |
| 111 |
|
unissb |
⊢ ( ∪ 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐶 ) |
| 112 |
110 111
|
sylibr |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → ∪ 𝐴 ⊆ 𝐶 ) |
| 113 |
|
elssuni |
⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ⊆ ∪ 𝐴 ) |
| 114 |
113
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → 𝐶 ⊆ ∪ 𝐴 ) |
| 115 |
112 114
|
eqssd |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → ∪ 𝐴 = 𝐶 ) |
| 116 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → 𝐶 ∈ 𝐴 ) |
| 117 |
115 116
|
eqeltrd |
⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → ∪ 𝐴 ∈ 𝐴 ) |
| 118 |
117
|
ex |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) → ( 𝑓 ⊆ 𝐶 → ∪ 𝐴 ∈ 𝐴 ) ) |
| 119 |
87 88 118
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( 𝑓 ⊆ 𝐶 → ∪ 𝐴 ∈ 𝐴 ) ) |
| 120 |
86 119
|
mtod |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ¬ 𝑓 ⊆ 𝐶 ) |
| 121 |
28
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → [⊊] Or 𝐴 ) |
| 122 |
|
simplrl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → 𝑓 ∈ 𝐴 ) |
| 123 |
|
sorpssi |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑓 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓 ) ) |
| 124 |
121 122 87 123
|
syl12anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( 𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓 ) ) |
| 125 |
|
orel1 |
⊢ ( ¬ 𝑓 ⊆ 𝐶 → ( ( 𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓 ) → 𝐶 ⊆ 𝑓 ) ) |
| 126 |
120 124 125
|
sylc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → 𝐶 ⊆ 𝑓 ) |
| 127 |
|
undif |
⊢ ( 𝐶 ⊆ 𝑓 ↔ ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) = 𝑓 ) |
| 128 |
126 127
|
sylib |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) = 𝑓 ) |
| 129 |
85 128
|
sseq12d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) ⊆ ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) ↔ ( ℎ ∪ 𝐶 ) ⊆ 𝑓 ) ) |
| 130 |
|
ssun1 |
⊢ ℎ ⊆ ( ℎ ∪ 𝐶 ) |
| 131 |
|
sstr |
⊢ ( ( ℎ ⊆ ( ℎ ∪ 𝐶 ) ∧ ( ℎ ∪ 𝐶 ) ⊆ 𝑓 ) → ℎ ⊆ 𝑓 ) |
| 132 |
130 131
|
mpan |
⊢ ( ( ℎ ∪ 𝐶 ) ⊆ 𝑓 → ℎ ⊆ 𝑓 ) |
| 133 |
129 132
|
biimtrdi |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) ⊆ ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) → ℎ ⊆ 𝑓 ) ) |
| 134 |
81 133
|
syl5 |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( ( ℎ ∖ 𝐶 ) ⊆ ( 𝑓 ∖ 𝐶 ) → ℎ ⊆ 𝑓 ) ) |
| 135 |
80 134
|
mpd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ℎ ⊆ 𝑓 ) |
| 136 |
135
|
ralrimiva |
⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → ∀ ℎ ∈ 𝐴 ℎ ⊆ 𝑓 ) |
| 137 |
|
unissb |
⊢ ( ∪ 𝐴 ⊆ 𝑓 ↔ ∀ ℎ ∈ 𝐴 ℎ ⊆ 𝑓 ) |
| 138 |
136 137
|
sylibr |
⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → ∪ 𝐴 ⊆ 𝑓 ) |
| 139 |
|
elssuni |
⊢ ( 𝑓 ∈ 𝐴 → 𝑓 ⊆ ∪ 𝐴 ) |
| 140 |
139
|
ad2antrl |
⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → 𝑓 ⊆ ∪ 𝐴 ) |
| 141 |
138 140
|
eqssd |
⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → ∪ 𝐴 = 𝑓 ) |
| 142 |
|
simprl |
⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → 𝑓 ∈ 𝐴 ) |
| 143 |
141 142
|
eqeltrd |
⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → ∪ 𝐴 ∈ 𝐴 ) |
| 144 |
143
|
rexlimdvaa |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ( ∃ 𝑓 ∈ 𝐴 ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) → ∪ 𝐴 ∈ 𝐴 ) ) |
| 145 |
65 144
|
syl5 |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ∪ 𝐴 ∈ 𝐴 ) ) |
| 146 |
61 145
|
mtod |
⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ¬ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 147 |
60 146
|
pm2.65da |
⊢ ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) → ¬ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) |