Metamath Proof Explorer


Theorem fin1a2lem2

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis fin1a2lem.a 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 )
Assertion fin1a2lem2 𝑆 : On –1-1→ On

Proof

Step Hyp Ref Expression
1 fin1a2lem.a 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 )
2 suceloni ( 𝑥 ∈ On → suc 𝑥 ∈ On )
3 1 2 fmpti 𝑆 : On ⟶ On
4 1 fin1a2lem1 ( 𝑎 ∈ On → ( 𝑆𝑎 ) = suc 𝑎 )
5 1 fin1a2lem1 ( 𝑏 ∈ On → ( 𝑆𝑏 ) = suc 𝑏 )
6 4 5 eqeqan12d ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) ↔ suc 𝑎 = suc 𝑏 ) )
7 suc11 ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( suc 𝑎 = suc 𝑏𝑎 = 𝑏 ) )
8 6 7 bitrd ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) ↔ 𝑎 = 𝑏 ) )
9 8 biimpd ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) → 𝑎 = 𝑏 ) )
10 9 rgen2 𝑎 ∈ On ∀ 𝑏 ∈ On ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) → 𝑎 = 𝑏 )
11 dff13 ( 𝑆 : On –1-1→ On ↔ ( 𝑆 : On ⟶ On ∧ ∀ 𝑎 ∈ On ∀ 𝑏 ∈ On ( ( 𝑆𝑎 ) = ( 𝑆𝑏 ) → 𝑎 = 𝑏 ) ) )
12 3 10 11 mpbir2an 𝑆 : On –1-1→ On