Step |
Hyp |
Ref |
Expression |
1 |
|
fin1a2lem.a |
⊢ 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 ) |
2 |
|
suceloni |
⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) |
3 |
1 2
|
fmpti |
⊢ 𝑆 : On ⟶ On |
4 |
1
|
fin1a2lem1 |
⊢ ( 𝑎 ∈ On → ( 𝑆 ‘ 𝑎 ) = suc 𝑎 ) |
5 |
1
|
fin1a2lem1 |
⊢ ( 𝑏 ∈ On → ( 𝑆 ‘ 𝑏 ) = suc 𝑏 ) |
6 |
4 5
|
eqeqan12d |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) ↔ suc 𝑎 = suc 𝑏 ) ) |
7 |
|
suc11 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( suc 𝑎 = suc 𝑏 ↔ 𝑎 = 𝑏 ) ) |
8 |
6 7
|
bitrd |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
9 |
8
|
biimpd |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
10 |
9
|
rgen2 |
⊢ ∀ 𝑎 ∈ On ∀ 𝑏 ∈ On ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → 𝑎 = 𝑏 ) |
11 |
|
dff13 |
⊢ ( 𝑆 : On –1-1→ On ↔ ( 𝑆 : On ⟶ On ∧ ∀ 𝑎 ∈ On ∀ 𝑏 ∈ On ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
12 |
3 10 11
|
mpbir2an |
⊢ 𝑆 : On –1-1→ On |