Step |
Hyp |
Ref |
Expression |
1 |
|
fin1a2lem.b |
⊢ 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) ) |
2 |
|
2onn |
⊢ 2o ∈ ω |
3 |
|
nnmcl |
⊢ ( ( 2o ∈ ω ∧ 𝑥 ∈ ω ) → ( 2o ·o 𝑥 ) ∈ ω ) |
4 |
2 3
|
mpan |
⊢ ( 𝑥 ∈ ω → ( 2o ·o 𝑥 ) ∈ ω ) |
5 |
1 4
|
fmpti |
⊢ 𝐸 : ω ⟶ ω |
6 |
1
|
fin1a2lem3 |
⊢ ( 𝑎 ∈ ω → ( 𝐸 ‘ 𝑎 ) = ( 2o ·o 𝑎 ) ) |
7 |
1
|
fin1a2lem3 |
⊢ ( 𝑏 ∈ ω → ( 𝐸 ‘ 𝑏 ) = ( 2o ·o 𝑏 ) ) |
8 |
6 7
|
eqeqan12d |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( 𝐸 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑏 ) ↔ ( 2o ·o 𝑎 ) = ( 2o ·o 𝑏 ) ) ) |
9 |
|
2on |
⊢ 2o ∈ On |
10 |
9
|
a1i |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → 2o ∈ On ) |
11 |
|
nnon |
⊢ ( 𝑎 ∈ ω → 𝑎 ∈ On ) |
12 |
11
|
adantr |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → 𝑎 ∈ On ) |
13 |
|
nnon |
⊢ ( 𝑏 ∈ ω → 𝑏 ∈ On ) |
14 |
13
|
adantl |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → 𝑏 ∈ On ) |
15 |
|
0lt1o |
⊢ ∅ ∈ 1o |
16 |
|
elelsuc |
⊢ ( ∅ ∈ 1o → ∅ ∈ suc 1o ) |
17 |
15 16
|
ax-mp |
⊢ ∅ ∈ suc 1o |
18 |
|
df-2o |
⊢ 2o = suc 1o |
19 |
17 18
|
eleqtrri |
⊢ ∅ ∈ 2o |
20 |
19
|
a1i |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ∅ ∈ 2o ) |
21 |
|
omcan |
⊢ ( ( ( 2o ∈ On ∧ 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ ∅ ∈ 2o ) → ( ( 2o ·o 𝑎 ) = ( 2o ·o 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
22 |
10 12 14 20 21
|
syl31anc |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( 2o ·o 𝑎 ) = ( 2o ·o 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
23 |
8 22
|
bitrd |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( 𝐸 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
24 |
23
|
biimpd |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( 𝐸 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
25 |
24
|
rgen2 |
⊢ ∀ 𝑎 ∈ ω ∀ 𝑏 ∈ ω ( ( 𝐸 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑏 ) → 𝑎 = 𝑏 ) |
26 |
|
dff13 |
⊢ ( 𝐸 : ω –1-1→ ω ↔ ( 𝐸 : ω ⟶ ω ∧ ∀ 𝑎 ∈ ω ∀ 𝑏 ∈ ω ( ( 𝐸 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
27 |
5 25 26
|
mpbir2an |
⊢ 𝐸 : ω –1-1→ ω |