Step |
Hyp |
Ref |
Expression |
1 |
|
fin1a2lem.b |
⊢ 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) ) |
2 |
|
fin1a2lem.aa |
⊢ 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 ) |
3 |
2
|
fin1a2lem2 |
⊢ 𝑆 : On –1-1→ On |
4 |
1
|
fin1a2lem4 |
⊢ 𝐸 : ω –1-1→ ω |
5 |
|
f1f |
⊢ ( 𝐸 : ω –1-1→ ω → 𝐸 : ω ⟶ ω ) |
6 |
|
frn |
⊢ ( 𝐸 : ω ⟶ ω → ran 𝐸 ⊆ ω ) |
7 |
|
omsson |
⊢ ω ⊆ On |
8 |
6 7
|
sstrdi |
⊢ ( 𝐸 : ω ⟶ ω → ran 𝐸 ⊆ On ) |
9 |
4 5 8
|
mp2b |
⊢ ran 𝐸 ⊆ On |
10 |
|
f1ores |
⊢ ( ( 𝑆 : On –1-1→ On ∧ ran 𝐸 ⊆ On ) → ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( 𝑆 “ ran 𝐸 ) ) |
11 |
3 9 10
|
mp2an |
⊢ ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( 𝑆 “ ran 𝐸 ) |
12 |
9
|
sseli |
⊢ ( 𝑏 ∈ ran 𝐸 → 𝑏 ∈ On ) |
13 |
2
|
fin1a2lem1 |
⊢ ( 𝑏 ∈ On → ( 𝑆 ‘ 𝑏 ) = suc 𝑏 ) |
14 |
12 13
|
syl |
⊢ ( 𝑏 ∈ ran 𝐸 → ( 𝑆 ‘ 𝑏 ) = suc 𝑏 ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑏 ∈ ran 𝐸 → ( ( 𝑆 ‘ 𝑏 ) = 𝑎 ↔ suc 𝑏 = 𝑎 ) ) |
16 |
15
|
rexbiia |
⊢ ( ∃ 𝑏 ∈ ran 𝐸 ( 𝑆 ‘ 𝑏 ) = 𝑎 ↔ ∃ 𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 ) |
17 |
4 5 6
|
mp2b |
⊢ ran 𝐸 ⊆ ω |
18 |
17
|
sseli |
⊢ ( 𝑏 ∈ ran 𝐸 → 𝑏 ∈ ω ) |
19 |
|
peano2 |
⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ ω ) |
20 |
18 19
|
syl |
⊢ ( 𝑏 ∈ ran 𝐸 → suc 𝑏 ∈ ω ) |
21 |
1
|
fin1a2lem5 |
⊢ ( 𝑏 ∈ ω → ( 𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸 ) ) |
22 |
21
|
biimpd |
⊢ ( 𝑏 ∈ ω → ( 𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸 ) ) |
23 |
18 22
|
mpcom |
⊢ ( 𝑏 ∈ ran 𝐸 → ¬ suc 𝑏 ∈ ran 𝐸 ) |
24 |
20 23
|
jca |
⊢ ( 𝑏 ∈ ran 𝐸 → ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ) |
25 |
|
eleq1 |
⊢ ( suc 𝑏 = 𝑎 → ( suc 𝑏 ∈ ω ↔ 𝑎 ∈ ω ) ) |
26 |
|
eleq1 |
⊢ ( suc 𝑏 = 𝑎 → ( suc 𝑏 ∈ ran 𝐸 ↔ 𝑎 ∈ ran 𝐸 ) ) |
27 |
26
|
notbid |
⊢ ( suc 𝑏 = 𝑎 → ( ¬ suc 𝑏 ∈ ran 𝐸 ↔ ¬ 𝑎 ∈ ran 𝐸 ) ) |
28 |
25 27
|
anbi12d |
⊢ ( suc 𝑏 = 𝑎 → ( ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ↔ ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ) ) |
29 |
24 28
|
syl5ibcom |
⊢ ( 𝑏 ∈ ran 𝐸 → ( suc 𝑏 = 𝑎 → ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ) ) |
30 |
29
|
rexlimiv |
⊢ ( ∃ 𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 → ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ) |
31 |
|
peano1 |
⊢ ∅ ∈ ω |
32 |
1
|
fin1a2lem3 |
⊢ ( ∅ ∈ ω → ( 𝐸 ‘ ∅ ) = ( 2o ·o ∅ ) ) |
33 |
31 32
|
ax-mp |
⊢ ( 𝐸 ‘ ∅ ) = ( 2o ·o ∅ ) |
34 |
|
2on |
⊢ 2o ∈ On |
35 |
|
om0 |
⊢ ( 2o ∈ On → ( 2o ·o ∅ ) = ∅ ) |
36 |
34 35
|
ax-mp |
⊢ ( 2o ·o ∅ ) = ∅ |
37 |
33 36
|
eqtri |
⊢ ( 𝐸 ‘ ∅ ) = ∅ |
38 |
|
f1fun |
⊢ ( 𝐸 : ω –1-1→ ω → Fun 𝐸 ) |
39 |
4 38
|
ax-mp |
⊢ Fun 𝐸 |
40 |
|
f1dm |
⊢ ( 𝐸 : ω –1-1→ ω → dom 𝐸 = ω ) |
41 |
4 40
|
ax-mp |
⊢ dom 𝐸 = ω |
42 |
31 41
|
eleqtrri |
⊢ ∅ ∈ dom 𝐸 |
43 |
|
fvelrn |
⊢ ( ( Fun 𝐸 ∧ ∅ ∈ dom 𝐸 ) → ( 𝐸 ‘ ∅ ) ∈ ran 𝐸 ) |
44 |
39 42 43
|
mp2an |
⊢ ( 𝐸 ‘ ∅ ) ∈ ran 𝐸 |
45 |
37 44
|
eqeltrri |
⊢ ∅ ∈ ran 𝐸 |
46 |
|
eleq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ∈ ran 𝐸 ↔ ∅ ∈ ran 𝐸 ) ) |
47 |
45 46
|
mpbiri |
⊢ ( 𝑎 = ∅ → 𝑎 ∈ ran 𝐸 ) |
48 |
47
|
necon3bi |
⊢ ( ¬ 𝑎 ∈ ran 𝐸 → 𝑎 ≠ ∅ ) |
49 |
|
nnsuc |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑎 ≠ ∅ ) → ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) |
50 |
48 49
|
sylan2 |
⊢ ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) → ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) |
51 |
|
eleq1 |
⊢ ( 𝑎 = suc 𝑏 → ( 𝑎 ∈ ω ↔ suc 𝑏 ∈ ω ) ) |
52 |
|
eleq1 |
⊢ ( 𝑎 = suc 𝑏 → ( 𝑎 ∈ ran 𝐸 ↔ suc 𝑏 ∈ ran 𝐸 ) ) |
53 |
52
|
notbid |
⊢ ( 𝑎 = suc 𝑏 → ( ¬ 𝑎 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸 ) ) |
54 |
51 53
|
anbi12d |
⊢ ( 𝑎 = suc 𝑏 → ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ↔ ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ) ) |
55 |
54
|
anbi1d |
⊢ ( 𝑎 = suc 𝑏 → ( ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) ↔ ( ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) ) ) |
56 |
|
simplr |
⊢ ( ( ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) → ¬ suc 𝑏 ∈ ran 𝐸 ) |
57 |
21
|
adantl |
⊢ ( ( ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) → ( 𝑏 ∈ ran 𝐸 ↔ ¬ suc 𝑏 ∈ ran 𝐸 ) ) |
58 |
56 57
|
mpbird |
⊢ ( ( ( suc 𝑏 ∈ ω ∧ ¬ suc 𝑏 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) → 𝑏 ∈ ran 𝐸 ) |
59 |
55 58
|
syl6bi |
⊢ ( 𝑎 = suc 𝑏 → ( ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) → 𝑏 ∈ ran 𝐸 ) ) |
60 |
59
|
com12 |
⊢ ( ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ∧ 𝑏 ∈ ω ) → ( 𝑎 = suc 𝑏 → 𝑏 ∈ ran 𝐸 ) ) |
61 |
60
|
impr |
⊢ ( ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ∧ ( 𝑏 ∈ ω ∧ 𝑎 = suc 𝑏 ) ) → 𝑏 ∈ ran 𝐸 ) |
62 |
|
simprr |
⊢ ( ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ∧ ( 𝑏 ∈ ω ∧ 𝑎 = suc 𝑏 ) ) → 𝑎 = suc 𝑏 ) |
63 |
62
|
eqcomd |
⊢ ( ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ∧ ( 𝑏 ∈ ω ∧ 𝑎 = suc 𝑏 ) ) → suc 𝑏 = 𝑎 ) |
64 |
50 61 63
|
reximssdv |
⊢ ( ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) → ∃ 𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 ) |
65 |
30 64
|
impbii |
⊢ ( ∃ 𝑏 ∈ ran 𝐸 suc 𝑏 = 𝑎 ↔ ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ) |
66 |
16 65
|
bitri |
⊢ ( ∃ 𝑏 ∈ ran 𝐸 ( 𝑆 ‘ 𝑏 ) = 𝑎 ↔ ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ) |
67 |
|
f1fn |
⊢ ( 𝑆 : On –1-1→ On → 𝑆 Fn On ) |
68 |
3 67
|
ax-mp |
⊢ 𝑆 Fn On |
69 |
|
fvelimab |
⊢ ( ( 𝑆 Fn On ∧ ran 𝐸 ⊆ On ) → ( 𝑎 ∈ ( 𝑆 “ ran 𝐸 ) ↔ ∃ 𝑏 ∈ ran 𝐸 ( 𝑆 ‘ 𝑏 ) = 𝑎 ) ) |
70 |
68 9 69
|
mp2an |
⊢ ( 𝑎 ∈ ( 𝑆 “ ran 𝐸 ) ↔ ∃ 𝑏 ∈ ran 𝐸 ( 𝑆 ‘ 𝑏 ) = 𝑎 ) |
71 |
|
eldif |
⊢ ( 𝑎 ∈ ( ω ∖ ran 𝐸 ) ↔ ( 𝑎 ∈ ω ∧ ¬ 𝑎 ∈ ran 𝐸 ) ) |
72 |
66 70 71
|
3bitr4i |
⊢ ( 𝑎 ∈ ( 𝑆 “ ran 𝐸 ) ↔ 𝑎 ∈ ( ω ∖ ran 𝐸 ) ) |
73 |
72
|
eqriv |
⊢ ( 𝑆 “ ran 𝐸 ) = ( ω ∖ ran 𝐸 ) |
74 |
|
f1oeq3 |
⊢ ( ( 𝑆 “ ran 𝐸 ) = ( ω ∖ ran 𝐸 ) → ( ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( 𝑆 “ ran 𝐸 ) ↔ ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( ω ∖ ran 𝐸 ) ) ) |
75 |
73 74
|
ax-mp |
⊢ ( ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( 𝑆 “ ran 𝐸 ) ↔ ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( ω ∖ ran 𝐸 ) ) |
76 |
11 75
|
mpbi |
⊢ ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( ω ∖ ran 𝐸 ) |