Step |
Hyp |
Ref |
Expression |
1 |
|
fin1a2lem.b |
⊢ 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) ) |
2 |
|
fin1a2lem.aa |
⊢ 𝑆 = ( 𝑥 ∈ On ↦ suc 𝑥 ) |
3 |
|
peano1 |
⊢ ∅ ∈ ω |
4 |
|
ne0i |
⊢ ( ∅ ∈ ω → ω ≠ ∅ ) |
5 |
|
brwdomn0 |
⊢ ( ω ≠ ∅ → ( ω ≼* 𝐴 ↔ ∃ 𝑓 𝑓 : 𝐴 –onto→ ω ) ) |
6 |
3 4 5
|
mp2b |
⊢ ( ω ≼* 𝐴 ↔ ∃ 𝑓 𝑓 : 𝐴 –onto→ ω ) |
7 |
|
vex |
⊢ 𝑓 ∈ V |
8 |
|
fof |
⊢ ( 𝑓 : 𝐴 –onto→ ω → 𝑓 : 𝐴 ⟶ ω ) |
9 |
|
dmfex |
⊢ ( ( 𝑓 ∈ V ∧ 𝑓 : 𝐴 ⟶ ω ) → 𝐴 ∈ V ) |
10 |
7 8 9
|
sylancr |
⊢ ( 𝑓 : 𝐴 –onto→ ω → 𝐴 ∈ V ) |
11 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ ran 𝐸 ) ⊆ dom 𝑓 |
12 |
11 8
|
fssdm |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ◡ 𝑓 “ ran 𝐸 ) ⊆ 𝐴 ) |
13 |
10 12
|
sselpwd |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ◡ 𝑓 “ ran 𝐸 ) ∈ 𝒫 𝐴 ) |
14 |
1
|
fin1a2lem4 |
⊢ 𝐸 : ω –1-1→ ω |
15 |
|
f1cnv |
⊢ ( 𝐸 : ω –1-1→ ω → ◡ 𝐸 : ran 𝐸 –1-1-onto→ ω ) |
16 |
|
f1ofo |
⊢ ( ◡ 𝐸 : ran 𝐸 –1-1-onto→ ω → ◡ 𝐸 : ran 𝐸 –onto→ ω ) |
17 |
14 15 16
|
mp2b |
⊢ ◡ 𝐸 : ran 𝐸 –onto→ ω |
18 |
|
fofun |
⊢ ( ◡ 𝐸 : ran 𝐸 –onto→ ω → Fun ◡ 𝐸 ) |
19 |
17 18
|
ax-mp |
⊢ Fun ◡ 𝐸 |
20 |
7
|
resex |
⊢ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ V |
21 |
|
cofunexg |
⊢ ( ( Fun ◡ 𝐸 ∧ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ V ) → ( ◡ 𝐸 ∘ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ∈ V ) |
22 |
19 20 21
|
mp2an |
⊢ ( ◡ 𝐸 ∘ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ∈ V |
23 |
|
fofun |
⊢ ( 𝑓 : 𝐴 –onto→ ω → Fun 𝑓 ) |
24 |
|
fores |
⊢ ( ( Fun 𝑓 ∧ ( ◡ 𝑓 “ ran 𝐸 ) ⊆ dom 𝑓 ) → ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) ) |
25 |
23 11 24
|
sylancl |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) ) |
26 |
|
f1f |
⊢ ( 𝐸 : ω –1-1→ ω → 𝐸 : ω ⟶ ω ) |
27 |
|
frn |
⊢ ( 𝐸 : ω ⟶ ω → ran 𝐸 ⊆ ω ) |
28 |
14 26 27
|
mp2b |
⊢ ran 𝐸 ⊆ ω |
29 |
|
foimacnv |
⊢ ( ( 𝑓 : 𝐴 –onto→ ω ∧ ran 𝐸 ⊆ ω ) → ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) = ran 𝐸 ) |
30 |
28 29
|
mpan2 |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) = ran 𝐸 ) |
31 |
|
foeq3 |
⊢ ( ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) = ran 𝐸 → ( ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) ↔ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ran 𝐸 ) ) |
32 |
30 31
|
syl |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ( 𝑓 “ ( ◡ 𝑓 “ ran 𝐸 ) ) ↔ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ran 𝐸 ) ) |
33 |
25 32
|
mpbid |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ran 𝐸 ) |
34 |
|
foco |
⊢ ( ( ◡ 𝐸 : ran 𝐸 –onto→ ω ∧ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ran 𝐸 ) → ( ◡ 𝐸 ∘ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ω ) |
35 |
17 33 34
|
sylancr |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ◡ 𝐸 ∘ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ω ) |
36 |
|
fowdom |
⊢ ( ( ( ◡ 𝐸 ∘ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ∈ V ∧ ( ◡ 𝐸 ∘ ( 𝑓 ↾ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( ◡ 𝑓 “ ran 𝐸 ) –onto→ ω ) → ω ≼* ( ◡ 𝑓 “ ran 𝐸 ) ) |
37 |
22 35 36
|
sylancr |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ω ≼* ( ◡ 𝑓 “ ran 𝐸 ) ) |
38 |
7
|
cnvex |
⊢ ◡ 𝑓 ∈ V |
39 |
38
|
imaex |
⊢ ( ◡ 𝑓 “ ran 𝐸 ) ∈ V |
40 |
|
isfin3-2 |
⊢ ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ V → ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ↔ ¬ ω ≼* ( ◡ 𝑓 “ ran 𝐸 ) ) ) |
41 |
39 40
|
ax-mp |
⊢ ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ↔ ¬ ω ≼* ( ◡ 𝑓 “ ran 𝐸 ) ) |
42 |
41
|
con2bii |
⊢ ( ω ≼* ( ◡ 𝑓 “ ran 𝐸 ) ↔ ¬ ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ) |
43 |
37 42
|
sylib |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ¬ ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ) |
44 |
1 2
|
fin1a2lem6 |
⊢ ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( ω ∖ ran 𝐸 ) |
45 |
|
f1ocnv |
⊢ ( ( 𝑆 ↾ ran 𝐸 ) : ran 𝐸 –1-1-onto→ ( ω ∖ ran 𝐸 ) → ◡ ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –1-1-onto→ ran 𝐸 ) |
46 |
|
f1ofo |
⊢ ( ◡ ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –1-1-onto→ ran 𝐸 → ◡ ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –onto→ ran 𝐸 ) |
47 |
44 45 46
|
mp2b |
⊢ ◡ ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –onto→ ran 𝐸 |
48 |
|
foco |
⊢ ( ( ◡ 𝐸 : ran 𝐸 –onto→ ω ∧ ◡ ( 𝑆 ↾ ran 𝐸 ) : ( ω ∖ ran 𝐸 ) –onto→ ran 𝐸 ) → ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) : ( ω ∖ ran 𝐸 ) –onto→ ω ) |
49 |
17 47 48
|
mp2an |
⊢ ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) : ( ω ∖ ran 𝐸 ) –onto→ ω |
50 |
|
fofun |
⊢ ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) : ( ω ∖ ran 𝐸 ) –onto→ ω → Fun ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ) |
51 |
49 50
|
ax-mp |
⊢ Fun ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) |
52 |
7
|
resex |
⊢ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ∈ V |
53 |
|
cofunexg |
⊢ ( ( Fun ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∧ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ∈ V ) → ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) ∈ V ) |
54 |
51 52 53
|
mp2an |
⊢ ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) ∈ V |
55 |
|
difss |
⊢ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ⊆ 𝐴 |
56 |
8
|
fdmd |
⊢ ( 𝑓 : 𝐴 –onto→ ω → dom 𝑓 = 𝐴 ) |
57 |
55 56
|
sseqtrrid |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ⊆ dom 𝑓 ) |
58 |
|
fores |
⊢ ( ( Fun 𝑓 ∧ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ⊆ dom 𝑓 ) → ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) |
59 |
23 57 58
|
syl2anc |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) |
60 |
|
funcnvcnv |
⊢ ( Fun 𝑓 → Fun ◡ ◡ 𝑓 ) |
61 |
|
imadif |
⊢ ( Fun ◡ ◡ 𝑓 → ( ◡ 𝑓 “ ( ω ∖ ran 𝐸 ) ) = ( ( ◡ 𝑓 “ ω ) ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) |
62 |
23 60 61
|
3syl |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ◡ 𝑓 “ ( ω ∖ ran 𝐸 ) ) = ( ( ◡ 𝑓 “ ω ) ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) |
63 |
62
|
imaeq2d |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 “ ( ◡ 𝑓 “ ( ω ∖ ran 𝐸 ) ) ) = ( 𝑓 “ ( ( ◡ 𝑓 “ ω ) ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) |
64 |
|
difss |
⊢ ( ω ∖ ran 𝐸 ) ⊆ ω |
65 |
|
foimacnv |
⊢ ( ( 𝑓 : 𝐴 –onto→ ω ∧ ( ω ∖ ran 𝐸 ) ⊆ ω ) → ( 𝑓 “ ( ◡ 𝑓 “ ( ω ∖ ran 𝐸 ) ) ) = ( ω ∖ ran 𝐸 ) ) |
66 |
64 65
|
mpan2 |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 “ ( ◡ 𝑓 “ ( ω ∖ ran 𝐸 ) ) ) = ( ω ∖ ran 𝐸 ) ) |
67 |
|
fimacnv |
⊢ ( 𝑓 : 𝐴 ⟶ ω → ( ◡ 𝑓 “ ω ) = 𝐴 ) |
68 |
8 67
|
syl |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ◡ 𝑓 “ ω ) = 𝐴 ) |
69 |
68
|
difeq1d |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ( ◡ 𝑓 “ ω ) ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) = ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) |
70 |
69
|
imaeq2d |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 “ ( ( ◡ 𝑓 “ ω ) ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) = ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) |
71 |
63 66 70
|
3eqtr3rd |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) = ( ω ∖ ran 𝐸 ) ) |
72 |
|
foeq3 |
⊢ ( ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) = ( ω ∖ ran 𝐸 ) → ( ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ↔ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( ω ∖ ran 𝐸 ) ) ) |
73 |
71 72
|
syl |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( 𝑓 “ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ↔ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( ω ∖ ran 𝐸 ) ) ) |
74 |
59 73
|
mpbid |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( ω ∖ ran 𝐸 ) ) |
75 |
|
foco |
⊢ ( ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) : ( ω ∖ ran 𝐸 ) –onto→ ω ∧ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ( ω ∖ ran 𝐸 ) ) → ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ω ) |
76 |
49 74 75
|
sylancr |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ω ) |
77 |
|
fowdom |
⊢ ( ( ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) ∈ V ∧ ( ( ◡ 𝐸 ∘ ◡ ( 𝑆 ↾ ran 𝐸 ) ) ∘ ( 𝑓 ↾ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) : ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) –onto→ ω ) → ω ≼* ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) |
78 |
54 76 77
|
sylancr |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ω ≼* ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) |
79 |
|
difexg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ V ) |
80 |
|
isfin3-2 |
⊢ ( ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ V → ( ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ↔ ¬ ω ≼* ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) |
81 |
10 79 80
|
3syl |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ↔ ¬ ω ≼* ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) ) |
82 |
81
|
con2bid |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ( ω ≼* ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ↔ ¬ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) |
83 |
78 82
|
mpbid |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ¬ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) |
84 |
|
eleq1 |
⊢ ( 𝑦 = ( ◡ 𝑓 “ ran 𝐸 ) → ( 𝑦 ∈ FinIII ↔ ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ) ) |
85 |
|
difeq2 |
⊢ ( 𝑦 = ( ◡ 𝑓 “ ran 𝐸 ) → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ) |
86 |
85
|
eleq1d |
⊢ ( 𝑦 = ( ◡ 𝑓 “ ran 𝐸 ) → ( ( 𝐴 ∖ 𝑦 ) ∈ FinIII ↔ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) |
87 |
84 86
|
orbi12d |
⊢ ( 𝑦 = ( ◡ 𝑓 “ ran 𝐸 ) → ( ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ↔ ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ∨ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) ) |
88 |
87
|
notbid |
⊢ ( 𝑦 = ( ◡ 𝑓 “ ran 𝐸 ) → ( ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ↔ ¬ ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ∨ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) ) |
89 |
|
ioran |
⊢ ( ¬ ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ∨ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ↔ ( ¬ ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ∧ ¬ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) |
90 |
88 89
|
bitrdi |
⊢ ( 𝑦 = ( ◡ 𝑓 “ ran 𝐸 ) → ( ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ↔ ( ¬ ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ∧ ¬ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) ) |
91 |
90
|
rspcev |
⊢ ( ( ( ◡ 𝑓 “ ran 𝐸 ) ∈ 𝒫 𝐴 ∧ ( ¬ ( ◡ 𝑓 “ ran 𝐸 ) ∈ FinIII ∧ ¬ ( 𝐴 ∖ ( ◡ 𝑓 “ ran 𝐸 ) ) ∈ FinIII ) ) → ∃ 𝑦 ∈ 𝒫 𝐴 ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) |
92 |
13 43 83 91
|
syl12anc |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ∃ 𝑦 ∈ 𝒫 𝐴 ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) |
93 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝒫 𝐴 ¬ ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ↔ ¬ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) |
94 |
92 93
|
sylib |
⊢ ( 𝑓 : 𝐴 –onto→ ω → ¬ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) |
95 |
94
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝐴 –onto→ ω → ¬ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) |
96 |
6 95
|
sylbi |
⊢ ( ω ≼* 𝐴 → ¬ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) |
97 |
96
|
con2i |
⊢ ( ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) → ¬ ω ≼* 𝐴 ) |
98 |
|
isfin3-2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴 ) ) |
99 |
97 98
|
syl5ibr |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) → 𝐴 ∈ FinIII ) ) |
100 |
99
|
imp |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ FinIII ∨ ( 𝐴 ∖ 𝑦 ) ∈ FinIII ) ) → 𝐴 ∈ FinIII ) |