Step |
Hyp |
Ref |
Expression |
1 |
|
elpwi |
⊢ ( 𝑐 ∈ 𝒫 𝒫 𝐴 → 𝑐 ⊆ 𝒫 𝐴 ) |
2 |
|
fin12 |
⊢ ( 𝑥 ∈ Fin → 𝑥 ∈ FinII ) |
3 |
|
fin23 |
⊢ ( 𝑥 ∈ FinII → 𝑥 ∈ FinIII ) |
4 |
2 3
|
syl |
⊢ ( 𝑥 ∈ Fin → 𝑥 ∈ FinIII ) |
5 |
|
fin23 |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ FinII → ( 𝐴 ∖ 𝑥 ) ∈ FinIII ) |
6 |
4 5
|
orim12i |
⊢ ( ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ( 𝑥 ∈ FinIII ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinIII ) ) |
7 |
6
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ FinIII ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinIII ) ) |
8 |
|
fin1a2lem8 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ FinIII ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinIII ) ) → 𝐴 ∈ FinIII ) |
9 |
7 8
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → 𝐴 ∈ FinIII ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) → 𝐴 ∈ FinIII ) |
11 |
|
simplrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → 𝑐 ⊆ 𝒫 𝐴 ) |
12 |
|
simprrr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) → [⊊] Or 𝑐 ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → [⊊] Or 𝑐 ) |
14 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → ¬ ∪ 𝑐 ∈ 𝑐 ) |
15 |
|
simplrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → 𝑐 ⊆ 𝒫 𝐴 ) |
16 |
|
ssralv |
⊢ ( 𝑐 ⊆ 𝒫 𝐴 → ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ∀ 𝑥 ∈ 𝑐 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ∀ 𝑥 ∈ 𝑐 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) |
18 |
|
idd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ 𝑥 ∈ 𝑐 ) → ( 𝑥 ∈ Fin → 𝑥 ∈ Fin ) ) |
19 |
|
fin1a2lem13 |
⊢ ( ( ( 𝑐 ⊆ 𝒫 𝐴 ∧ [⊊] Or 𝑐 ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ ( ¬ 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝑐 ) ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) |
20 |
19
|
ex |
⊢ ( ( 𝑐 ⊆ 𝒫 𝐴 ∧ [⊊] Or 𝑐 ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ( ¬ 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝑐 ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) |
21 |
20
|
3expa |
⊢ ( ( ( 𝑐 ⊆ 𝒫 𝐴 ∧ [⊊] Or 𝑐 ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ( ¬ 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝑐 ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) |
22 |
21
|
adantlrl |
⊢ ( ( ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ( ¬ 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝑐 ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) |
23 |
22
|
adantll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ( ¬ 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝑐 ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) |
24 |
23
|
imp |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ ( ¬ 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝑐 ) ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) |
25 |
24
|
ancom2s |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ ( 𝑥 ∈ 𝑐 ∧ ¬ 𝑥 ∈ Fin ) ) → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) |
26 |
25
|
expr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ 𝑥 ∈ 𝑐 ) → ( ¬ 𝑥 ∈ Fin → ¬ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) |
27 |
26
|
con4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ 𝑥 ∈ 𝑐 ) → ( ( 𝐴 ∖ 𝑥 ) ∈ FinII → 𝑥 ∈ Fin ) ) |
28 |
18 27
|
jaod |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ 𝑥 ∈ 𝑐 ) → ( ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → 𝑥 ∈ Fin ) ) |
29 |
28
|
ralimdva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ∀ 𝑥 ∈ 𝑐 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ∀ 𝑥 ∈ 𝑐 𝑥 ∈ Fin ) ) |
30 |
17 29
|
syld |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ∀ 𝑥 ∈ 𝑐 𝑥 ∈ Fin ) ) |
31 |
30
|
impr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → ∀ 𝑥 ∈ 𝑐 𝑥 ∈ Fin ) |
32 |
|
dfss3 |
⊢ ( 𝑐 ⊆ Fin ↔ ∀ 𝑥 ∈ 𝑐 𝑥 ∈ Fin ) |
33 |
31 32
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → 𝑐 ⊆ Fin ) |
34 |
|
simprrl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) → 𝑐 ≠ ∅ ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → 𝑐 ≠ ∅ ) |
36 |
|
fin1a2lem12 |
⊢ ( ( ( 𝑐 ⊆ 𝒫 𝐴 ∧ [⊊] Or 𝑐 ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) ∧ ( 𝑐 ⊆ Fin ∧ 𝑐 ≠ ∅ ) ) → ¬ 𝐴 ∈ FinIII ) |
37 |
11 13 14 33 35 36
|
syl32anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ( ¬ ∪ 𝑐 ∈ 𝑐 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ) → ¬ 𝐴 ∈ FinIII ) |
38 |
37
|
expr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ¬ ∪ 𝑐 ∈ 𝑐 ) → ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) → ¬ 𝐴 ∈ FinIII ) ) |
39 |
38
|
impancom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → ( ¬ ∪ 𝑐 ∈ 𝑐 → ¬ 𝐴 ∈ FinIII ) ) |
40 |
39
|
an32s |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) → ( ¬ ∪ 𝑐 ∈ 𝑐 → ¬ 𝐴 ∈ FinIII ) ) |
41 |
10 40
|
mt4d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) ∧ ( 𝑐 ⊆ 𝒫 𝐴 ∧ ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) ) ) → ∪ 𝑐 ∈ 𝑐 ) |
42 |
41
|
exp32 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → ( 𝑐 ⊆ 𝒫 𝐴 → ( ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) → ∪ 𝑐 ∈ 𝑐 ) ) ) |
43 |
1 42
|
syl5 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → ( 𝑐 ∈ 𝒫 𝒫 𝐴 → ( ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) → ∪ 𝑐 ∈ 𝑐 ) ) ) |
44 |
43
|
ralrimiv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → ∀ 𝑐 ∈ 𝒫 𝒫 𝐴 ( ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) → ∪ 𝑐 ∈ 𝑐 ) ) |
45 |
|
isfin2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinII ↔ ∀ 𝑐 ∈ 𝒫 𝒫 𝐴 ( ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) → ∪ 𝑐 ∈ 𝑐 ) ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → ( 𝐴 ∈ FinII ↔ ∀ 𝑐 ∈ 𝒫 𝒫 𝐴 ( ( 𝑐 ≠ ∅ ∧ [⊊] Or 𝑐 ) → ∪ 𝑐 ∈ 𝑐 ) ) ) |
47 |
44 46
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ FinII ) ) → 𝐴 ∈ FinII ) |