Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem11.1 |
⊢ ( 𝑧 = ( 𝐴 ∖ 𝑥 ) → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
fin23lem11.2 |
⊢ ( 𝑤 = ( 𝐴 ∖ 𝑣 ) → ( 𝜑 ↔ 𝜃 ) ) |
3 |
|
fin23lem11.3 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑣 ⊆ 𝐴 ) → ( 𝜒 ↔ 𝜃 ) ) |
4 |
|
difeq2 |
⊢ ( 𝑐 = 𝑥 → ( 𝐴 ∖ 𝑐 ) = ( 𝐴 ∖ 𝑥 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑐 = 𝑥 → ( ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 ↔ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) |
6 |
5
|
elrab |
⊢ ( 𝑥 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) |
7 |
|
simp2r |
⊢ ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) |
8 |
2
|
notbid |
⊢ ( 𝑤 = ( 𝐴 ∖ 𝑣 ) → ( ¬ 𝜑 ↔ ¬ 𝜃 ) ) |
9 |
|
simpl3 |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) |
10 |
|
difeq2 |
⊢ ( 𝑐 = ( 𝐴 ∖ 𝑣 ) → ( 𝐴 ∖ 𝑐 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑐 = ( 𝐴 ∖ 𝑣 ) → ( ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) ∈ 𝐵 ) ) |
12 |
|
difss |
⊢ ( 𝐴 ∖ 𝑣 ) ⊆ 𝐴 |
13 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝑥 ) |
14 |
|
undif1 |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) = ( 𝐴 ∪ 𝑥 ) |
15 |
13 14
|
sseqtrri |
⊢ 𝐴 ⊆ ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) |
16 |
|
simpl2r |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) |
17 |
|
simpl2l |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑥 ∈ 𝒫 𝐴 ) |
18 |
|
unexg |
⊢ ( ( ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) ∈ V ) |
19 |
16 17 18
|
syl2anc |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) ∈ V ) |
20 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) ∧ ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) ∈ V ) → 𝐴 ∈ V ) |
21 |
15 19 20
|
sylancr |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝐴 ∈ V ) |
22 |
|
elpw2g |
⊢ ( 𝐴 ∈ V → ( ( 𝐴 ∖ 𝑣 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑣 ) ⊆ 𝐴 ) ) |
23 |
21 22
|
syl |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝐴 ∖ 𝑣 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑣 ) ⊆ 𝐴 ) ) |
24 |
12 23
|
mpbiri |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ 𝑣 ) ∈ 𝒫 𝐴 ) |
25 |
|
simpl1 |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝐵 ⊆ 𝒫 𝐴 ) |
26 |
|
simpr |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝐵 ) |
27 |
25 26
|
sseldd |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝒫 𝐴 ) |
28 |
27
|
elpwid |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ⊆ 𝐴 ) |
29 |
|
dfss4 |
⊢ ( 𝑣 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) = 𝑣 ) |
30 |
28 29
|
sylib |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) = 𝑣 ) |
31 |
30 26
|
eqeltrd |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) ∈ 𝐵 ) |
32 |
11 24 31
|
elrabd |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ 𝑣 ) ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) |
33 |
8 9 32
|
rspcdva |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ¬ 𝜃 ) |
34 |
|
simplrl |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → 𝑥 ∈ 𝒫 𝐴 ) |
35 |
34
|
elpwid |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → 𝑥 ⊆ 𝐴 ) |
36 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝒫 𝐴 ) |
37 |
36
|
adantlr |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝒫 𝐴 ) |
38 |
37
|
elpwid |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ⊆ 𝐴 ) |
39 |
35 38 3
|
syl2anc |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝜒 ↔ 𝜃 ) ) |
40 |
39
|
notbid |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → ( ¬ 𝜒 ↔ ¬ 𝜃 ) ) |
41 |
40
|
3adantl3 |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( ¬ 𝜒 ↔ ¬ 𝜃 ) ) |
42 |
33 41
|
mpbird |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ¬ 𝜒 ) |
43 |
42
|
ralrimiva |
⊢ ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) → ∀ 𝑣 ∈ 𝐵 ¬ 𝜒 ) |
44 |
1
|
notbid |
⊢ ( 𝑧 = ( 𝐴 ∖ 𝑥 ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) |
45 |
44
|
ralbidv |
⊢ ( 𝑧 = ( 𝐴 ∖ 𝑥 ) → ( ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ↔ ∀ 𝑣 ∈ 𝐵 ¬ 𝜒 ) ) |
46 |
45
|
rspcev |
⊢ ( ( ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑣 ∈ 𝐵 ¬ 𝜒 ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) |
47 |
7 43 46
|
syl2anc |
⊢ ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) |
48 |
47
|
3exp |
⊢ ( 𝐵 ⊆ 𝒫 𝐴 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) → ( ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) ) ) |
49 |
6 48
|
syl5bi |
⊢ ( 𝐵 ⊆ 𝒫 𝐴 → ( 𝑥 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } → ( ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) ) ) |
50 |
49
|
rexlimdv |
⊢ ( 𝐵 ⊆ 𝒫 𝐴 → ( ∃ 𝑥 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) ) |