| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fin23lem11.1 |
⊢ ( 𝑧 = ( 𝐴 ∖ 𝑥 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 2 |
|
fin23lem11.2 |
⊢ ( 𝑤 = ( 𝐴 ∖ 𝑣 ) → ( 𝜑 ↔ 𝜃 ) ) |
| 3 |
|
fin23lem11.3 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑣 ⊆ 𝐴 ) → ( 𝜒 ↔ 𝜃 ) ) |
| 4 |
|
difeq2 |
⊢ ( 𝑐 = 𝑥 → ( 𝐴 ∖ 𝑐 ) = ( 𝐴 ∖ 𝑥 ) ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝑐 = 𝑥 → ( ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 ↔ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) |
| 6 |
5
|
elrab |
⊢ ( 𝑥 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) |
| 7 |
|
simp2r |
⊢ ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) |
| 8 |
2
|
notbid |
⊢ ( 𝑤 = ( 𝐴 ∖ 𝑣 ) → ( ¬ 𝜑 ↔ ¬ 𝜃 ) ) |
| 9 |
|
simpl3 |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) |
| 10 |
|
difeq2 |
⊢ ( 𝑐 = ( 𝐴 ∖ 𝑣 ) → ( 𝐴 ∖ 𝑐 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑐 = ( 𝐴 ∖ 𝑣 ) → ( ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) ∈ 𝐵 ) ) |
| 12 |
|
difss |
⊢ ( 𝐴 ∖ 𝑣 ) ⊆ 𝐴 |
| 13 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝑥 ) |
| 14 |
|
undif1 |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) = ( 𝐴 ∪ 𝑥 ) |
| 15 |
13 14
|
sseqtrri |
⊢ 𝐴 ⊆ ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) |
| 16 |
|
simpl2r |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) |
| 17 |
|
simpl2l |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 18 |
|
unexg |
⊢ ( ( ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) ∈ V ) |
| 19 |
16 17 18
|
syl2anc |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) ∈ V ) |
| 20 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) ∧ ( ( 𝐴 ∖ 𝑥 ) ∪ 𝑥 ) ∈ V ) → 𝐴 ∈ V ) |
| 21 |
15 19 20
|
sylancr |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝐴 ∈ V ) |
| 22 |
|
elpw2g |
⊢ ( 𝐴 ∈ V → ( ( 𝐴 ∖ 𝑣 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑣 ) ⊆ 𝐴 ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝐴 ∖ 𝑣 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑣 ) ⊆ 𝐴 ) ) |
| 24 |
12 23
|
mpbiri |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ 𝑣 ) ∈ 𝒫 𝐴 ) |
| 25 |
|
simpl1 |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝐵 ⊆ 𝒫 𝐴 ) |
| 26 |
|
simpr |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝐵 ) |
| 27 |
25 26
|
sseldd |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝒫 𝐴 ) |
| 28 |
27
|
elpwid |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ⊆ 𝐴 ) |
| 29 |
|
dfss4 |
⊢ ( 𝑣 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) = 𝑣 ) |
| 30 |
28 29
|
sylib |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) = 𝑣 ) |
| 31 |
30 26
|
eqeltrd |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑣 ) ) ∈ 𝐵 ) |
| 32 |
11 24 31
|
elrabd |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝐴 ∖ 𝑣 ) ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) |
| 33 |
8 9 32
|
rspcdva |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ¬ 𝜃 ) |
| 34 |
|
simplrl |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 35 |
34
|
elpwid |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → 𝑥 ⊆ 𝐴 ) |
| 36 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝒫 𝐴 ) |
| 37 |
36
|
adantlr |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝒫 𝐴 ) |
| 38 |
37
|
elpwid |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ⊆ 𝐴 ) |
| 39 |
35 38 3
|
syl2anc |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝜒 ↔ 𝜃 ) ) |
| 40 |
39
|
notbid |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) ∧ 𝑣 ∈ 𝐵 ) → ( ¬ 𝜒 ↔ ¬ 𝜃 ) ) |
| 41 |
40
|
3adantl3 |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ( ¬ 𝜒 ↔ ¬ 𝜃 ) ) |
| 42 |
33 41
|
mpbird |
⊢ ( ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) ∧ 𝑣 ∈ 𝐵 ) → ¬ 𝜒 ) |
| 43 |
42
|
ralrimiva |
⊢ ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) → ∀ 𝑣 ∈ 𝐵 ¬ 𝜒 ) |
| 44 |
1
|
notbid |
⊢ ( 𝑧 = ( 𝐴 ∖ 𝑥 ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) |
| 45 |
44
|
ralbidv |
⊢ ( 𝑧 = ( 𝐴 ∖ 𝑥 ) → ( ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ↔ ∀ 𝑣 ∈ 𝐵 ¬ 𝜒 ) ) |
| 46 |
45
|
rspcev |
⊢ ( ( ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑣 ∈ 𝐵 ¬ 𝜒 ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) |
| 47 |
7 43 46
|
syl2anc |
⊢ ( ( 𝐵 ⊆ 𝒫 𝐴 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) |
| 48 |
47
|
3exp |
⊢ ( 𝐵 ⊆ 𝒫 𝐴 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) → ( ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) ) ) |
| 49 |
6 48
|
biimtrid |
⊢ ( 𝐵 ⊆ 𝒫 𝐴 → ( 𝑥 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } → ( ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) ) ) |
| 50 |
49
|
rexlimdv |
⊢ ( 𝐵 ⊆ 𝒫 𝐴 → ( ∃ 𝑥 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∀ 𝑤 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝜑 → ∃ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ¬ 𝜓 ) ) |