Metamath Proof Explorer


Theorem fin23lem12

Description: The beginning of the proof that every II-finite set (every chain of subsets has a maximal element) is III-finite (has no denumerable collection of subsets).

This first section is dedicated to the construction of U and its intersection. First, the value of U at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
Assertion fin23lem12 ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) = if ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = ∅ , ( 𝑈𝐴 ) , ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
2 1 seqomsuc ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) = ( 𝐴 ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) ( 𝑈𝐴 ) ) )
3 fvex ( 𝑈𝐴 ) ∈ V
4 fveq2 ( 𝑖 = 𝐴 → ( 𝑡𝑖 ) = ( 𝑡𝐴 ) )
5 4 ineq1d ( 𝑖 = 𝐴 → ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ( ( 𝑡𝐴 ) ∩ 𝑢 ) )
6 5 eqeq1d ( 𝑖 = 𝐴 → ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ ↔ ( ( 𝑡𝐴 ) ∩ 𝑢 ) = ∅ ) )
7 6 5 ifbieq2d ( 𝑖 = 𝐴 → if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) = if ( ( ( 𝑡𝐴 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝐴 ) ∩ 𝑢 ) ) )
8 ineq2 ( 𝑢 = ( 𝑈𝐴 ) → ( ( 𝑡𝐴 ) ∩ 𝑢 ) = ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) )
9 8 eqeq1d ( 𝑢 = ( 𝑈𝐴 ) → ( ( ( 𝑡𝐴 ) ∩ 𝑢 ) = ∅ ↔ ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = ∅ ) )
10 id ( 𝑢 = ( 𝑈𝐴 ) → 𝑢 = ( 𝑈𝐴 ) )
11 9 10 8 ifbieq12d ( 𝑢 = ( 𝑈𝐴 ) → if ( ( ( 𝑡𝐴 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝐴 ) ∩ 𝑢 ) ) = if ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = ∅ , ( 𝑈𝐴 ) , ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ) )
12 eqid ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) = ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) )
13 3 inex2 ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ∈ V
14 3 13 ifex if ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = ∅ , ( 𝑈𝐴 ) , ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ) ∈ V
15 7 11 12 14 ovmpo ( ( 𝐴 ∈ ω ∧ ( 𝑈𝐴 ) ∈ V ) → ( 𝐴 ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) ( 𝑈𝐴 ) ) = if ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = ∅ , ( 𝑈𝐴 ) , ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ) )
16 3 15 mpan2 ( 𝐴 ∈ ω → ( 𝐴 ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) ( 𝑈𝐴 ) ) = if ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = ∅ , ( 𝑈𝐴 ) , ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ) )
17 2 16 eqtrd ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) = if ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = ∅ , ( 𝑈𝐴 ) , ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ) )