Metamath Proof Explorer


Theorem fin23lem13

Description: Lemma for fin23 . Each step of U is a decrease. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
Assertion fin23lem13 ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑈𝐴 ) )

Proof

Step Hyp Ref Expression
1 fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
2 1 fin23lem12 ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) = if ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = ∅ , ( 𝑈𝐴 ) , ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ) )
3 sseq1 ( ( 𝑈𝐴 ) = if ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = ∅ , ( 𝑈𝐴 ) , ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ) → ( ( 𝑈𝐴 ) ⊆ ( 𝑈𝐴 ) ↔ if ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = ∅ , ( 𝑈𝐴 ) , ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ) ⊆ ( 𝑈𝐴 ) ) )
4 sseq1 ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = if ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = ∅ , ( 𝑈𝐴 ) , ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ) → ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ⊆ ( 𝑈𝐴 ) ↔ if ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = ∅ , ( 𝑈𝐴 ) , ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ) ⊆ ( 𝑈𝐴 ) ) )
5 ssid ( 𝑈𝐴 ) ⊆ ( 𝑈𝐴 )
6 inss2 ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ⊆ ( 𝑈𝐴 )
7 3 4 5 6 keephyp if ( ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) = ∅ , ( 𝑈𝐴 ) , ( ( 𝑡𝐴 ) ∩ ( 𝑈𝐴 ) ) ) ⊆ ( 𝑈𝐴 )
8 2 7 eqsstrdi ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑈𝐴 ) )