Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) |
2 |
1
|
fin23lem12 |
⊢ ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) = if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ) |
3 |
|
sseq1 |
⊢ ( ( 𝑈 ‘ 𝐴 ) = if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) → ( ( 𝑈 ‘ 𝐴 ) ⊆ ( 𝑈 ‘ 𝐴 ) ↔ if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ⊆ ( 𝑈 ‘ 𝐴 ) ) ) |
4 |
|
sseq1 |
⊢ ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) → ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ⊆ ( 𝑈 ‘ 𝐴 ) ↔ if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ⊆ ( 𝑈 ‘ 𝐴 ) ) ) |
5 |
|
ssid |
⊢ ( 𝑈 ‘ 𝐴 ) ⊆ ( 𝑈 ‘ 𝐴 ) |
6 |
|
inss2 |
⊢ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ⊆ ( 𝑈 ‘ 𝐴 ) |
7 |
3 4 5 6
|
keephyp |
⊢ if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ⊆ ( 𝑈 ‘ 𝐴 ) |
8 |
2 7
|
eqsstrdi |
⊢ ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑈 ‘ 𝐴 ) ) |