Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) |
2 |
|
fveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝑈 ‘ 𝑏 ) = ( 𝑈 ‘ 𝐵 ) ) |
3 |
2
|
sseq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑈 ‘ 𝑏 ) ⊆ ( 𝑈 ‘ 𝐵 ) ↔ ( 𝑈 ‘ 𝐵 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑏 = 𝑎 → ( 𝑈 ‘ 𝑏 ) = ( 𝑈 ‘ 𝑎 ) ) |
5 |
4
|
sseq1d |
⊢ ( 𝑏 = 𝑎 → ( ( 𝑈 ‘ 𝑏 ) ⊆ ( 𝑈 ‘ 𝐵 ) ↔ ( 𝑈 ‘ 𝑎 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑏 = suc 𝑎 → ( 𝑈 ‘ 𝑏 ) = ( 𝑈 ‘ suc 𝑎 ) ) |
7 |
6
|
sseq1d |
⊢ ( 𝑏 = suc 𝑎 → ( ( 𝑈 ‘ 𝑏 ) ⊆ ( 𝑈 ‘ 𝐵 ) ↔ ( 𝑈 ‘ suc 𝑎 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑏 = 𝐴 → ( 𝑈 ‘ 𝑏 ) = ( 𝑈 ‘ 𝐴 ) ) |
9 |
8
|
sseq1d |
⊢ ( 𝑏 = 𝐴 → ( ( 𝑈 ‘ 𝑏 ) ⊆ ( 𝑈 ‘ 𝐵 ) ↔ ( 𝑈 ‘ 𝐴 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) ) |
10 |
|
ssidd |
⊢ ( 𝐵 ∈ ω → ( 𝑈 ‘ 𝐵 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) |
11 |
1
|
fin23lem13 |
⊢ ( 𝑎 ∈ ω → ( 𝑈 ‘ suc 𝑎 ) ⊆ ( 𝑈 ‘ 𝑎 ) ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) → ( 𝑈 ‘ suc 𝑎 ) ⊆ ( 𝑈 ‘ 𝑎 ) ) |
13 |
|
sstr2 |
⊢ ( ( 𝑈 ‘ suc 𝑎 ) ⊆ ( 𝑈 ‘ 𝑎 ) → ( ( 𝑈 ‘ 𝑎 ) ⊆ ( 𝑈 ‘ 𝐵 ) → ( 𝑈 ‘ suc 𝑎 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) ) |
14 |
12 13
|
syl |
⊢ ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) → ( ( 𝑈 ‘ 𝑎 ) ⊆ ( 𝑈 ‘ 𝐵 ) → ( 𝑈 ‘ suc 𝑎 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) ) |
15 |
3 5 7 9 10 14
|
findsg |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝐴 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) |