Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) |
2 |
1
|
fin23lem12 |
⊢ ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) = if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ) |
3 |
|
eqif |
⊢ ( ( 𝑈 ‘ suc 𝐴 ) = if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ↔ ( ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) ) ∨ ( ¬ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ) ) |
4 |
2 3
|
sylib |
⊢ ( 𝐴 ∈ ω → ( ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) ) ∨ ( ¬ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ) ) |
5 |
|
incom |
⊢ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ suc 𝐴 ) ) |
6 |
|
ineq2 |
⊢ ( ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) → ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ suc 𝐴 ) ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) |
7 |
6
|
eqeq1d |
⊢ ( ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) → ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ suc 𝐴 ) ) = ∅ ↔ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ) ) |
8 |
7
|
biimparc |
⊢ ( ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) ) → ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ suc 𝐴 ) ) = ∅ ) |
9 |
5 8
|
eqtrid |
⊢ ( ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) ) → ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) |
10 |
|
inss1 |
⊢ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ⊆ ( 𝑡 ‘ 𝐴 ) |
11 |
|
sseq1 |
⊢ ( ( 𝑈 ‘ suc 𝐴 ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) → ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ↔ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ⊆ ( 𝑡 ‘ 𝐴 ) ) ) |
12 |
10 11
|
mpbiri |
⊢ ( ( 𝑈 ‘ suc 𝐴 ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) → ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ) |
13 |
12
|
adantl |
⊢ ( ( ¬ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) → ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ) |
14 |
9 13
|
orim12i |
⊢ ( ( ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) ) ∨ ( ¬ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ) → ( ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ∨ ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ) ) |
15 |
4 14
|
syl |
⊢ ( 𝐴 ∈ ω → ( ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ∨ ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ) ) |
16 |
15
|
orcomd |
⊢ ( 𝐴 ∈ ω → ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ∨ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) ) |