| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fin23lem.a | 
							⊢ 𝑈  =  seqω ( ( 𝑖  ∈  ω ,  𝑢  ∈  V  ↦  if ( ( ( 𝑡 ‘ 𝑖 )  ∩  𝑢 )  =  ∅ ,  𝑢 ,  ( ( 𝑡 ‘ 𝑖 )  ∩  𝑢 ) ) ) ,  ∪  ran  𝑡 )  | 
						
						
							| 2 | 
							
								1
							 | 
							fin23lem12 | 
							⊢ ( 𝐴  ∈  ω  →  ( 𝑈 ‘ suc  𝐴 )  =  if ( ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  =  ∅ ,  ( 𝑈 ‘ 𝐴 ) ,  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eqif | 
							⊢ ( ( 𝑈 ‘ suc  𝐴 )  =  if ( ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  =  ∅ ,  ( 𝑈 ‘ 𝐴 ) ,  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) ) )  ↔  ( ( ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  =  ∅  ∧  ( 𝑈 ‘ suc  𝐴 )  =  ( 𝑈 ‘ 𝐴 ) )  ∨  ( ¬  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  =  ∅  ∧  ( 𝑈 ‘ suc  𝐴 )  =  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) ) ) ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylib | 
							⊢ ( 𝐴  ∈  ω  →  ( ( ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  =  ∅  ∧  ( 𝑈 ‘ suc  𝐴 )  =  ( 𝑈 ‘ 𝐴 ) )  ∨  ( ¬  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  =  ∅  ∧  ( 𝑈 ‘ suc  𝐴 )  =  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							incom | 
							⊢ ( ( 𝑈 ‘ suc  𝐴 )  ∩  ( 𝑡 ‘ 𝐴 ) )  =  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ suc  𝐴 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ineq2 | 
							⊢ ( ( 𝑈 ‘ suc  𝐴 )  =  ( 𝑈 ‘ 𝐴 )  →  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ suc  𝐴 ) )  =  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eqeq1d | 
							⊢ ( ( 𝑈 ‘ suc  𝐴 )  =  ( 𝑈 ‘ 𝐴 )  →  ( ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ suc  𝐴 ) )  =  ∅  ↔  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  =  ∅ ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							biimparc | 
							⊢ ( ( ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  =  ∅  ∧  ( 𝑈 ‘ suc  𝐴 )  =  ( 𝑈 ‘ 𝐴 ) )  →  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ suc  𝐴 ) )  =  ∅ )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							eqtrid | 
							⊢ ( ( ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  =  ∅  ∧  ( 𝑈 ‘ suc  𝐴 )  =  ( 𝑈 ‘ 𝐴 ) )  →  ( ( 𝑈 ‘ suc  𝐴 )  ∩  ( 𝑡 ‘ 𝐴 ) )  =  ∅ )  | 
						
						
							| 10 | 
							
								
							 | 
							inss1 | 
							⊢ ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  ⊆  ( 𝑡 ‘ 𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							sseq1 | 
							⊢ ( ( 𝑈 ‘ suc  𝐴 )  =  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  →  ( ( 𝑈 ‘ suc  𝐴 )  ⊆  ( 𝑡 ‘ 𝐴 )  ↔  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  ⊆  ( 𝑡 ‘ 𝐴 ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							mpbiri | 
							⊢ ( ( 𝑈 ‘ suc  𝐴 )  =  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  →  ( 𝑈 ‘ suc  𝐴 )  ⊆  ( 𝑡 ‘ 𝐴 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantl | 
							⊢ ( ( ¬  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  =  ∅  ∧  ( 𝑈 ‘ suc  𝐴 )  =  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) ) )  →  ( 𝑈 ‘ suc  𝐴 )  ⊆  ( 𝑡 ‘ 𝐴 ) )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							orim12i | 
							⊢ ( ( ( ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  =  ∅  ∧  ( 𝑈 ‘ suc  𝐴 )  =  ( 𝑈 ‘ 𝐴 ) )  ∨  ( ¬  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) )  =  ∅  ∧  ( 𝑈 ‘ suc  𝐴 )  =  ( ( 𝑡 ‘ 𝐴 )  ∩  ( 𝑈 ‘ 𝐴 ) ) ) )  →  ( ( ( 𝑈 ‘ suc  𝐴 )  ∩  ( 𝑡 ‘ 𝐴 ) )  =  ∅  ∨  ( 𝑈 ‘ suc  𝐴 )  ⊆  ( 𝑡 ‘ 𝐴 ) ) )  | 
						
						
							| 15 | 
							
								4 14
							 | 
							syl | 
							⊢ ( 𝐴  ∈  ω  →  ( ( ( 𝑈 ‘ suc  𝐴 )  ∩  ( 𝑡 ‘ 𝐴 ) )  =  ∅  ∨  ( 𝑈 ‘ suc  𝐴 )  ⊆  ( 𝑡 ‘ 𝐴 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							orcomd | 
							⊢ ( 𝐴  ∈  ω  →  ( ( 𝑈 ‘ suc  𝐴 )  ⊆  ( 𝑡 ‘ 𝐴 )  ∨  ( ( 𝑈 ‘ suc  𝐴 )  ∩  ( 𝑡 ‘ 𝐴 ) )  =  ∅ ) )  |