Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) |
2 |
1
|
fnseqom |
⊢ 𝑈 Fn ω |
3 |
|
peano2 |
⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) |
4 |
|
fnfvelrn |
⊢ ( ( 𝑈 Fn ω ∧ suc 𝐴 ∈ ω ) → ( 𝑈 ‘ suc 𝐴 ) ∈ ran 𝑈 ) |
5 |
2 3 4
|
sylancr |
⊢ ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) ∈ ran 𝑈 ) |
6 |
|
intss1 |
⊢ ( ( 𝑈 ‘ suc 𝐴 ) ∈ ran 𝑈 → ∩ ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ ω → ∩ ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) ) |
8 |
1
|
fin23lem19 |
⊢ ( 𝐴 ∈ ω → ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ∨ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) ) |
9 |
|
sstr2 |
⊢ ( ∩ ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) → ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) → ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝐴 ) ) ) |
10 |
|
ssdisj |
⊢ ( ( ∩ ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) ∧ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) → ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) |
11 |
10
|
ex |
⊢ ( ∩ ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) → ( ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ → ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) ) |
12 |
9 11
|
orim12d |
⊢ ( ∩ ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) → ( ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ∨ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝐴 ) ∨ ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) ) ) |
13 |
7 8 12
|
sylc |
⊢ ( 𝐴 ∈ ω → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝐴 ) ∨ ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) ) |