| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fin23lem.a | 
							⊢ 𝑈  =  seqω ( ( 𝑖  ∈  ω ,  𝑢  ∈  V  ↦  if ( ( ( 𝑡 ‘ 𝑖 )  ∩  𝑢 )  =  ∅ ,  𝑢 ,  ( ( 𝑡 ‘ 𝑖 )  ∩  𝑢 ) ) ) ,  ∪  ran  𝑡 )  | 
						
						
							| 2 | 
							
								1
							 | 
							fnseqom | 
							⊢ 𝑈  Fn  ω  | 
						
						
							| 3 | 
							
								
							 | 
							peano2 | 
							⊢ ( 𝐴  ∈  ω  →  suc  𝐴  ∈  ω )  | 
						
						
							| 4 | 
							
								
							 | 
							fnfvelrn | 
							⊢ ( ( 𝑈  Fn  ω  ∧  suc  𝐴  ∈  ω )  →  ( 𝑈 ‘ suc  𝐴 )  ∈  ran  𝑈 )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							sylancr | 
							⊢ ( 𝐴  ∈  ω  →  ( 𝑈 ‘ suc  𝐴 )  ∈  ran  𝑈 )  | 
						
						
							| 6 | 
							
								
							 | 
							intss1 | 
							⊢ ( ( 𝑈 ‘ suc  𝐴 )  ∈  ran  𝑈  →  ∩  ran  𝑈  ⊆  ( 𝑈 ‘ suc  𝐴 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							⊢ ( 𝐴  ∈  ω  →  ∩  ran  𝑈  ⊆  ( 𝑈 ‘ suc  𝐴 ) )  | 
						
						
							| 8 | 
							
								1
							 | 
							fin23lem19 | 
							⊢ ( 𝐴  ∈  ω  →  ( ( 𝑈 ‘ suc  𝐴 )  ⊆  ( 𝑡 ‘ 𝐴 )  ∨  ( ( 𝑈 ‘ suc  𝐴 )  ∩  ( 𝑡 ‘ 𝐴 ) )  =  ∅ ) )  | 
						
						
							| 9 | 
							
								
							 | 
							sstr2 | 
							⊢ ( ∩  ran  𝑈  ⊆  ( 𝑈 ‘ suc  𝐴 )  →  ( ( 𝑈 ‘ suc  𝐴 )  ⊆  ( 𝑡 ‘ 𝐴 )  →  ∩  ran  𝑈  ⊆  ( 𝑡 ‘ 𝐴 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							ssdisj | 
							⊢ ( ( ∩  ran  𝑈  ⊆  ( 𝑈 ‘ suc  𝐴 )  ∧  ( ( 𝑈 ‘ suc  𝐴 )  ∩  ( 𝑡 ‘ 𝐴 ) )  =  ∅ )  →  ( ∩  ran  𝑈  ∩  ( 𝑡 ‘ 𝐴 ) )  =  ∅ )  | 
						
						
							| 11 | 
							
								10
							 | 
							ex | 
							⊢ ( ∩  ran  𝑈  ⊆  ( 𝑈 ‘ suc  𝐴 )  →  ( ( ( 𝑈 ‘ suc  𝐴 )  ∩  ( 𝑡 ‘ 𝐴 ) )  =  ∅  →  ( ∩  ran  𝑈  ∩  ( 𝑡 ‘ 𝐴 ) )  =  ∅ ) )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							orim12d | 
							⊢ ( ∩  ran  𝑈  ⊆  ( 𝑈 ‘ suc  𝐴 )  →  ( ( ( 𝑈 ‘ suc  𝐴 )  ⊆  ( 𝑡 ‘ 𝐴 )  ∨  ( ( 𝑈 ‘ suc  𝐴 )  ∩  ( 𝑡 ‘ 𝐴 ) )  =  ∅ )  →  ( ∩  ran  𝑈  ⊆  ( 𝑡 ‘ 𝐴 )  ∨  ( ∩  ran  𝑈  ∩  ( 𝑡 ‘ 𝐴 ) )  =  ∅ ) ) )  | 
						
						
							| 13 | 
							
								7 8 12
							 | 
							sylc | 
							⊢ ( 𝐴  ∈  ω  →  ( ∩  ran  𝑈  ⊆  ( 𝑡 ‘ 𝐴 )  ∨  ( ∩  ran  𝑈  ∩  ( 𝑡 ‘ 𝐴 ) )  =  ∅ ) )  |