Metamath Proof Explorer


Theorem fin23lem20

Description: Lemma for fin23 . X is either contained in or disjoint from all input sets. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
Assertion fin23lem20 ( 𝐴 ∈ ω → ( ran 𝑈 ⊆ ( 𝑡𝐴 ) ∨ ( ran 𝑈 ∩ ( 𝑡𝐴 ) ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
2 1 fnseqom 𝑈 Fn ω
3 peano2 ( 𝐴 ∈ ω → suc 𝐴 ∈ ω )
4 fnfvelrn ( ( 𝑈 Fn ω ∧ suc 𝐴 ∈ ω ) → ( 𝑈 ‘ suc 𝐴 ) ∈ ran 𝑈 )
5 2 3 4 sylancr ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) ∈ ran 𝑈 )
6 intss1 ( ( 𝑈 ‘ suc 𝐴 ) ∈ ran 𝑈 ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) )
7 5 6 syl ( 𝐴 ∈ ω → ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) )
8 1 fin23lem19 ( 𝐴 ∈ ω → ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡𝐴 ) ∨ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡𝐴 ) ) = ∅ ) )
9 sstr2 ( ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) → ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡𝐴 ) → ran 𝑈 ⊆ ( 𝑡𝐴 ) ) )
10 ssdisj ( ( ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) ∧ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡𝐴 ) ) = ∅ ) → ( ran 𝑈 ∩ ( 𝑡𝐴 ) ) = ∅ )
11 10 ex ( ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) → ( ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡𝐴 ) ) = ∅ → ( ran 𝑈 ∩ ( 𝑡𝐴 ) ) = ∅ ) )
12 9 11 orim12d ( ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) → ( ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡𝐴 ) ∨ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡𝐴 ) ) = ∅ ) → ( ran 𝑈 ⊆ ( 𝑡𝐴 ) ∨ ( ran 𝑈 ∩ ( 𝑡𝐴 ) ) = ∅ ) ) )
13 7 8 12 sylc ( 𝐴 ∈ ω → ( ran 𝑈 ⊆ ( 𝑡𝐴 ) ∨ ( ran 𝑈 ∩ ( 𝑡𝐴 ) ) = ∅ ) )