Metamath Proof Explorer


Theorem fin23lem21

Description: Lemma for fin23 . X is not empty. We only need here that t has at least one set in its range besides (/) ; the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
fin23lem17.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
Assertion fin23lem21 ( ( ran 𝑡𝐹𝑡 : ω –1-1𝑉 ) → ran 𝑈 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
2 fin23lem17.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
3 1 2 fin23lem17 ( ( ran 𝑡𝐹𝑡 : ω –1-1𝑉 ) → ran 𝑈 ∈ ran 𝑈 )
4 1 fnseqom 𝑈 Fn ω
5 fvelrnb ( 𝑈 Fn ω → ( ran 𝑈 ∈ ran 𝑈 ↔ ∃ 𝑎 ∈ ω ( 𝑈𝑎 ) = ran 𝑈 ) )
6 4 5 ax-mp ( ran 𝑈 ∈ ran 𝑈 ↔ ∃ 𝑎 ∈ ω ( 𝑈𝑎 ) = ran 𝑈 )
7 id ( 𝑎 ∈ ω → 𝑎 ∈ ω )
8 vex 𝑡 ∈ V
9 f1f1orn ( 𝑡 : ω –1-1𝑉𝑡 : ω –1-1-onto→ ran 𝑡 )
10 f1oen3g ( ( 𝑡 ∈ V ∧ 𝑡 : ω –1-1-onto→ ran 𝑡 ) → ω ≈ ran 𝑡 )
11 8 9 10 sylancr ( 𝑡 : ω –1-1𝑉 → ω ≈ ran 𝑡 )
12 ominf ¬ ω ∈ Fin
13 ssdif0 ( ran 𝑡 ⊆ { ∅ } ↔ ( ran 𝑡 ∖ { ∅ } ) = ∅ )
14 snfi { ∅ } ∈ Fin
15 ssfi ( ( { ∅ } ∈ Fin ∧ ran 𝑡 ⊆ { ∅ } ) → ran 𝑡 ∈ Fin )
16 14 15 mpan ( ran 𝑡 ⊆ { ∅ } → ran 𝑡 ∈ Fin )
17 enfi ( ω ≈ ran 𝑡 → ( ω ∈ Fin ↔ ran 𝑡 ∈ Fin ) )
18 16 17 syl5ibr ( ω ≈ ran 𝑡 → ( ran 𝑡 ⊆ { ∅ } → ω ∈ Fin ) )
19 13 18 syl5bir ( ω ≈ ran 𝑡 → ( ( ran 𝑡 ∖ { ∅ } ) = ∅ → ω ∈ Fin ) )
20 19 necon3bd ( ω ≈ ran 𝑡 → ( ¬ ω ∈ Fin → ( ran 𝑡 ∖ { ∅ } ) ≠ ∅ ) )
21 11 12 20 mpisyl ( 𝑡 : ω –1-1𝑉 → ( ran 𝑡 ∖ { ∅ } ) ≠ ∅ )
22 n0 ( ( ran 𝑡 ∖ { ∅ } ) ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ ( ran 𝑡 ∖ { ∅ } ) )
23 eldifsn ( 𝑎 ∈ ( ran 𝑡 ∖ { ∅ } ) ↔ ( 𝑎 ∈ ran 𝑡𝑎 ≠ ∅ ) )
24 elssuni ( 𝑎 ∈ ran 𝑡𝑎 ran 𝑡 )
25 ssn0 ( ( 𝑎 ran 𝑡𝑎 ≠ ∅ ) → ran 𝑡 ≠ ∅ )
26 24 25 sylan ( ( 𝑎 ∈ ran 𝑡𝑎 ≠ ∅ ) → ran 𝑡 ≠ ∅ )
27 23 26 sylbi ( 𝑎 ∈ ( ran 𝑡 ∖ { ∅ } ) → ran 𝑡 ≠ ∅ )
28 27 exlimiv ( ∃ 𝑎 𝑎 ∈ ( ran 𝑡 ∖ { ∅ } ) → ran 𝑡 ≠ ∅ )
29 22 28 sylbi ( ( ran 𝑡 ∖ { ∅ } ) ≠ ∅ → ran 𝑡 ≠ ∅ )
30 21 29 syl ( 𝑡 : ω –1-1𝑉 ran 𝑡 ≠ ∅ )
31 1 fin23lem14 ( ( 𝑎 ∈ ω ∧ ran 𝑡 ≠ ∅ ) → ( 𝑈𝑎 ) ≠ ∅ )
32 7 30 31 syl2anr ( ( 𝑡 : ω –1-1𝑉𝑎 ∈ ω ) → ( 𝑈𝑎 ) ≠ ∅ )
33 neeq1 ( ( 𝑈𝑎 ) = ran 𝑈 → ( ( 𝑈𝑎 ) ≠ ∅ ↔ ran 𝑈 ≠ ∅ ) )
34 32 33 syl5ibcom ( ( 𝑡 : ω –1-1𝑉𝑎 ∈ ω ) → ( ( 𝑈𝑎 ) = ran 𝑈 ran 𝑈 ≠ ∅ ) )
35 34 rexlimdva ( 𝑡 : ω –1-1𝑉 → ( ∃ 𝑎 ∈ ω ( 𝑈𝑎 ) = ran 𝑈 ran 𝑈 ≠ ∅ ) )
36 6 35 syl5bi ( 𝑡 : ω –1-1𝑉 → ( ran 𝑈 ∈ ran 𝑈 ran 𝑈 ≠ ∅ ) )
37 36 adantl ( ( ran 𝑡𝐹𝑡 : ω –1-1𝑉 ) → ( ran 𝑈 ∈ ran 𝑈 ran 𝑈 ≠ ∅ ) )
38 3 37 mpd ( ( ran 𝑡𝐹𝑡 : ω –1-1𝑉 ) → ran 𝑈 ≠ ∅ )