Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) |
2 |
|
fin23lem17.f |
⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } |
3 |
1 2
|
fin23lem17 |
⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ∩ ran 𝑈 ∈ ran 𝑈 ) |
4 |
1
|
fnseqom |
⊢ 𝑈 Fn ω |
5 |
|
fvelrnb |
⊢ ( 𝑈 Fn ω → ( ∩ ran 𝑈 ∈ ran 𝑈 ↔ ∃ 𝑎 ∈ ω ( 𝑈 ‘ 𝑎 ) = ∩ ran 𝑈 ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ∩ ran 𝑈 ∈ ran 𝑈 ↔ ∃ 𝑎 ∈ ω ( 𝑈 ‘ 𝑎 ) = ∩ ran 𝑈 ) |
7 |
|
id |
⊢ ( 𝑎 ∈ ω → 𝑎 ∈ ω ) |
8 |
|
vex |
⊢ 𝑡 ∈ V |
9 |
|
f1f1orn |
⊢ ( 𝑡 : ω –1-1→ 𝑉 → 𝑡 : ω –1-1-onto→ ran 𝑡 ) |
10 |
|
f1oen3g |
⊢ ( ( 𝑡 ∈ V ∧ 𝑡 : ω –1-1-onto→ ran 𝑡 ) → ω ≈ ran 𝑡 ) |
11 |
8 9 10
|
sylancr |
⊢ ( 𝑡 : ω –1-1→ 𝑉 → ω ≈ ran 𝑡 ) |
12 |
|
ominf |
⊢ ¬ ω ∈ Fin |
13 |
|
ssdif0 |
⊢ ( ran 𝑡 ⊆ { ∅ } ↔ ( ran 𝑡 ∖ { ∅ } ) = ∅ ) |
14 |
|
snfi |
⊢ { ∅ } ∈ Fin |
15 |
|
ssfi |
⊢ ( ( { ∅ } ∈ Fin ∧ ran 𝑡 ⊆ { ∅ } ) → ran 𝑡 ∈ Fin ) |
16 |
14 15
|
mpan |
⊢ ( ran 𝑡 ⊆ { ∅ } → ran 𝑡 ∈ Fin ) |
17 |
|
enfi |
⊢ ( ω ≈ ran 𝑡 → ( ω ∈ Fin ↔ ran 𝑡 ∈ Fin ) ) |
18 |
16 17
|
syl5ibr |
⊢ ( ω ≈ ran 𝑡 → ( ran 𝑡 ⊆ { ∅ } → ω ∈ Fin ) ) |
19 |
13 18
|
syl5bir |
⊢ ( ω ≈ ran 𝑡 → ( ( ran 𝑡 ∖ { ∅ } ) = ∅ → ω ∈ Fin ) ) |
20 |
19
|
necon3bd |
⊢ ( ω ≈ ran 𝑡 → ( ¬ ω ∈ Fin → ( ran 𝑡 ∖ { ∅ } ) ≠ ∅ ) ) |
21 |
11 12 20
|
mpisyl |
⊢ ( 𝑡 : ω –1-1→ 𝑉 → ( ran 𝑡 ∖ { ∅ } ) ≠ ∅ ) |
22 |
|
n0 |
⊢ ( ( ran 𝑡 ∖ { ∅ } ) ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ ( ran 𝑡 ∖ { ∅ } ) ) |
23 |
|
eldifsn |
⊢ ( 𝑎 ∈ ( ran 𝑡 ∖ { ∅ } ) ↔ ( 𝑎 ∈ ran 𝑡 ∧ 𝑎 ≠ ∅ ) ) |
24 |
|
elssuni |
⊢ ( 𝑎 ∈ ran 𝑡 → 𝑎 ⊆ ∪ ran 𝑡 ) |
25 |
|
ssn0 |
⊢ ( ( 𝑎 ⊆ ∪ ran 𝑡 ∧ 𝑎 ≠ ∅ ) → ∪ ran 𝑡 ≠ ∅ ) |
26 |
24 25
|
sylan |
⊢ ( ( 𝑎 ∈ ran 𝑡 ∧ 𝑎 ≠ ∅ ) → ∪ ran 𝑡 ≠ ∅ ) |
27 |
23 26
|
sylbi |
⊢ ( 𝑎 ∈ ( ran 𝑡 ∖ { ∅ } ) → ∪ ran 𝑡 ≠ ∅ ) |
28 |
27
|
exlimiv |
⊢ ( ∃ 𝑎 𝑎 ∈ ( ran 𝑡 ∖ { ∅ } ) → ∪ ran 𝑡 ≠ ∅ ) |
29 |
22 28
|
sylbi |
⊢ ( ( ran 𝑡 ∖ { ∅ } ) ≠ ∅ → ∪ ran 𝑡 ≠ ∅ ) |
30 |
21 29
|
syl |
⊢ ( 𝑡 : ω –1-1→ 𝑉 → ∪ ran 𝑡 ≠ ∅ ) |
31 |
1
|
fin23lem14 |
⊢ ( ( 𝑎 ∈ ω ∧ ∪ ran 𝑡 ≠ ∅ ) → ( 𝑈 ‘ 𝑎 ) ≠ ∅ ) |
32 |
7 30 31
|
syl2anr |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ 𝑎 ∈ ω ) → ( 𝑈 ‘ 𝑎 ) ≠ ∅ ) |
33 |
|
neeq1 |
⊢ ( ( 𝑈 ‘ 𝑎 ) = ∩ ran 𝑈 → ( ( 𝑈 ‘ 𝑎 ) ≠ ∅ ↔ ∩ ran 𝑈 ≠ ∅ ) ) |
34 |
32 33
|
syl5ibcom |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ 𝑎 ∈ ω ) → ( ( 𝑈 ‘ 𝑎 ) = ∩ ran 𝑈 → ∩ ran 𝑈 ≠ ∅ ) ) |
35 |
34
|
rexlimdva |
⊢ ( 𝑡 : ω –1-1→ 𝑉 → ( ∃ 𝑎 ∈ ω ( 𝑈 ‘ 𝑎 ) = ∩ ran 𝑈 → ∩ ran 𝑈 ≠ ∅ ) ) |
36 |
6 35
|
syl5bi |
⊢ ( 𝑡 : ω –1-1→ 𝑉 → ( ∩ ran 𝑈 ∈ ran 𝑈 → ∩ ran 𝑈 ≠ ∅ ) ) |
37 |
36
|
adantl |
⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ( ∩ ran 𝑈 ∈ ran 𝑈 → ∩ ran 𝑈 ≠ ∅ ) ) |
38 |
3 37
|
mpd |
⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ∩ ran 𝑈 ≠ ∅ ) |