| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fin23lem22.b |
⊢ 𝐶 = ( 𝑖 ∈ ω ↦ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) |
| 2 |
|
fin23lem23 |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) |
| 3 |
|
riotacl |
⊢ ( ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ∈ 𝑆 ) |
| 4 |
2 3
|
syl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ∈ 𝑆 ) |
| 5 |
|
simpll |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑎 ∈ 𝑆 ) → 𝑆 ⊆ ω ) |
| 6 |
|
simpr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝑆 ) |
| 7 |
5 6
|
sseldd |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ω ) |
| 8 |
|
nnfi |
⊢ ( 𝑎 ∈ ω → 𝑎 ∈ Fin ) |
| 9 |
|
infi |
⊢ ( 𝑎 ∈ Fin → ( 𝑎 ∩ 𝑆 ) ∈ Fin ) |
| 10 |
|
ficardom |
⊢ ( ( 𝑎 ∩ 𝑆 ) ∈ Fin → ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ∈ ω ) |
| 11 |
7 8 9 10
|
4syl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑎 ∈ 𝑆 ) → ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ∈ ω ) |
| 12 |
|
cardnn |
⊢ ( 𝑖 ∈ ω → ( card ‘ 𝑖 ) = 𝑖 ) |
| 13 |
12
|
eqcomd |
⊢ ( 𝑖 ∈ ω → 𝑖 = ( card ‘ 𝑖 ) ) |
| 14 |
13
|
eqeq1d |
⊢ ( 𝑖 ∈ ω → ( 𝑖 = ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ↔ ( card ‘ 𝑖 ) = ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ) ) |
| 15 |
|
eqcom |
⊢ ( ( card ‘ 𝑖 ) = ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ↔ ( card ‘ ( 𝑎 ∩ 𝑆 ) ) = ( card ‘ 𝑖 ) ) |
| 16 |
14 15
|
bitrdi |
⊢ ( 𝑖 ∈ ω → ( 𝑖 = ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ↔ ( card ‘ ( 𝑎 ∩ 𝑆 ) ) = ( card ‘ 𝑖 ) ) ) |
| 17 |
16
|
ad2antrl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ( 𝑖 = ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ↔ ( card ‘ ( 𝑎 ∩ 𝑆 ) ) = ( card ‘ 𝑖 ) ) ) |
| 18 |
|
simpll |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → 𝑆 ⊆ ω ) |
| 19 |
|
simprr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → 𝑎 ∈ 𝑆 ) |
| 20 |
18 19
|
sseldd |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → 𝑎 ∈ ω ) |
| 21 |
|
nnon |
⊢ ( 𝑎 ∈ ω → 𝑎 ∈ On ) |
| 22 |
|
onenon |
⊢ ( 𝑎 ∈ On → 𝑎 ∈ dom card ) |
| 23 |
20 21 22
|
3syl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → 𝑎 ∈ dom card ) |
| 24 |
|
inss1 |
⊢ ( 𝑎 ∩ 𝑆 ) ⊆ 𝑎 |
| 25 |
|
ssnum |
⊢ ( ( 𝑎 ∈ dom card ∧ ( 𝑎 ∩ 𝑆 ) ⊆ 𝑎 ) → ( 𝑎 ∩ 𝑆 ) ∈ dom card ) |
| 26 |
23 24 25
|
sylancl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ( 𝑎 ∩ 𝑆 ) ∈ dom card ) |
| 27 |
|
nnon |
⊢ ( 𝑖 ∈ ω → 𝑖 ∈ On ) |
| 28 |
27
|
ad2antrl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → 𝑖 ∈ On ) |
| 29 |
|
onenon |
⊢ ( 𝑖 ∈ On → 𝑖 ∈ dom card ) |
| 30 |
28 29
|
syl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → 𝑖 ∈ dom card ) |
| 31 |
|
carden2 |
⊢ ( ( ( 𝑎 ∩ 𝑆 ) ∈ dom card ∧ 𝑖 ∈ dom card ) → ( ( card ‘ ( 𝑎 ∩ 𝑆 ) ) = ( card ‘ 𝑖 ) ↔ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) ) |
| 32 |
26 30 31
|
syl2anc |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ( ( card ‘ ( 𝑎 ∩ 𝑆 ) ) = ( card ‘ 𝑖 ) ↔ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) ) |
| 33 |
2
|
adantrr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) |
| 34 |
|
ineq1 |
⊢ ( 𝑗 = 𝑎 → ( 𝑗 ∩ 𝑆 ) = ( 𝑎 ∩ 𝑆 ) ) |
| 35 |
34
|
breq1d |
⊢ ( 𝑗 = 𝑎 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) ) |
| 36 |
35
|
riota2 |
⊢ ( ( 𝑎 ∈ 𝑆 ∧ ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) → ( ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ↔ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) = 𝑎 ) ) |
| 37 |
19 33 36
|
syl2anc |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ↔ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) = 𝑎 ) ) |
| 38 |
|
eqcom |
⊢ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) = 𝑎 ↔ 𝑎 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) |
| 39 |
37 38
|
bitrdi |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ↔ 𝑎 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) ) |
| 40 |
17 32 39
|
3bitrd |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ( 𝑖 = ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ↔ 𝑎 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) ) |
| 41 |
1 4 11 40
|
f1o2d |
⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐶 : ω –1-1-onto→ 𝑆 ) |