| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fin23lem26 |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) |
| 2 |
|
ensym |
⊢ ( ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 → 𝑖 ≈ ( 𝑎 ∩ 𝑆 ) ) |
| 3 |
|
entr |
⊢ ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ 𝑖 ≈ ( 𝑎 ∩ 𝑆 ) ) → ( 𝑗 ∩ 𝑆 ) ≈ ( 𝑎 ∩ 𝑆 ) ) |
| 4 |
2 3
|
sylan2 |
⊢ ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) → ( 𝑗 ∩ 𝑆 ) ≈ ( 𝑎 ∩ 𝑆 ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → 𝑆 ⊆ ω ) |
| 6 |
|
simprl |
⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → 𝑗 ∈ 𝑆 ) |
| 7 |
5 6
|
sseldd |
⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → 𝑗 ∈ ω ) |
| 8 |
|
nnfi |
⊢ ( 𝑗 ∈ ω → 𝑗 ∈ Fin ) |
| 9 |
|
inss1 |
⊢ ( 𝑗 ∩ 𝑆 ) ⊆ 𝑗 |
| 10 |
|
ssfi |
⊢ ( ( 𝑗 ∈ Fin ∧ ( 𝑗 ∩ 𝑆 ) ⊆ 𝑗 ) → ( 𝑗 ∩ 𝑆 ) ∈ Fin ) |
| 11 |
8 9 10
|
sylancl |
⊢ ( 𝑗 ∈ ω → ( 𝑗 ∩ 𝑆 ) ∈ Fin ) |
| 12 |
7 11
|
syl |
⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( 𝑗 ∩ 𝑆 ) ∈ Fin ) |
| 13 |
|
simprr |
⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → 𝑎 ∈ 𝑆 ) |
| 14 |
5 13
|
sseldd |
⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → 𝑎 ∈ ω ) |
| 15 |
|
nnfi |
⊢ ( 𝑎 ∈ ω → 𝑎 ∈ Fin ) |
| 16 |
|
inss1 |
⊢ ( 𝑎 ∩ 𝑆 ) ⊆ 𝑎 |
| 17 |
|
ssfi |
⊢ ( ( 𝑎 ∈ Fin ∧ ( 𝑎 ∩ 𝑆 ) ⊆ 𝑎 ) → ( 𝑎 ∩ 𝑆 ) ∈ Fin ) |
| 18 |
15 16 17
|
sylancl |
⊢ ( 𝑎 ∈ ω → ( 𝑎 ∩ 𝑆 ) ∈ Fin ) |
| 19 |
14 18
|
syl |
⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( 𝑎 ∩ 𝑆 ) ∈ Fin ) |
| 20 |
|
nnord |
⊢ ( 𝑗 ∈ ω → Ord 𝑗 ) |
| 21 |
|
nnord |
⊢ ( 𝑎 ∈ ω → Ord 𝑎 ) |
| 22 |
|
ordtri2or2 |
⊢ ( ( Ord 𝑗 ∧ Ord 𝑎 ) → ( 𝑗 ⊆ 𝑎 ∨ 𝑎 ⊆ 𝑗 ) ) |
| 23 |
20 21 22
|
syl2an |
⊢ ( ( 𝑗 ∈ ω ∧ 𝑎 ∈ ω ) → ( 𝑗 ⊆ 𝑎 ∨ 𝑎 ⊆ 𝑗 ) ) |
| 24 |
7 14 23
|
syl2anc |
⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( 𝑗 ⊆ 𝑎 ∨ 𝑎 ⊆ 𝑗 ) ) |
| 25 |
|
ssrin |
⊢ ( 𝑗 ⊆ 𝑎 → ( 𝑗 ∩ 𝑆 ) ⊆ ( 𝑎 ∩ 𝑆 ) ) |
| 26 |
|
ssrin |
⊢ ( 𝑎 ⊆ 𝑗 → ( 𝑎 ∩ 𝑆 ) ⊆ ( 𝑗 ∩ 𝑆 ) ) |
| 27 |
25 26
|
orim12i |
⊢ ( ( 𝑗 ⊆ 𝑎 ∨ 𝑎 ⊆ 𝑗 ) → ( ( 𝑗 ∩ 𝑆 ) ⊆ ( 𝑎 ∩ 𝑆 ) ∨ ( 𝑎 ∩ 𝑆 ) ⊆ ( 𝑗 ∩ 𝑆 ) ) ) |
| 28 |
24 27
|
syl |
⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑗 ∩ 𝑆 ) ⊆ ( 𝑎 ∩ 𝑆 ) ∨ ( 𝑎 ∩ 𝑆 ) ⊆ ( 𝑗 ∩ 𝑆 ) ) ) |
| 29 |
|
fin23lem25 |
⊢ ( ( ( 𝑗 ∩ 𝑆 ) ∈ Fin ∧ ( 𝑎 ∩ 𝑆 ) ∈ Fin ∧ ( ( 𝑗 ∩ 𝑆 ) ⊆ ( 𝑎 ∩ 𝑆 ) ∨ ( 𝑎 ∩ 𝑆 ) ⊆ ( 𝑗 ∩ 𝑆 ) ) ) → ( ( 𝑗 ∩ 𝑆 ) ≈ ( 𝑎 ∩ 𝑆 ) ↔ ( 𝑗 ∩ 𝑆 ) = ( 𝑎 ∩ 𝑆 ) ) ) |
| 30 |
12 19 28 29
|
syl3anc |
⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑗 ∩ 𝑆 ) ≈ ( 𝑎 ∩ 𝑆 ) ↔ ( 𝑗 ∩ 𝑆 ) = ( 𝑎 ∩ 𝑆 ) ) ) |
| 31 |
|
ordom |
⊢ Ord ω |
| 32 |
|
fin23lem24 |
⊢ ( ( ( Ord ω ∧ 𝑆 ⊆ ω ) ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑗 ∩ 𝑆 ) = ( 𝑎 ∩ 𝑆 ) ↔ 𝑗 = 𝑎 ) ) |
| 33 |
31 32
|
mpanl1 |
⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑗 ∩ 𝑆 ) = ( 𝑎 ∩ 𝑆 ) ↔ 𝑗 = 𝑎 ) ) |
| 34 |
30 33
|
bitrd |
⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑗 ∩ 𝑆 ) ≈ ( 𝑎 ∩ 𝑆 ) ↔ 𝑗 = 𝑎 ) ) |
| 35 |
4 34
|
imbitrid |
⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) → 𝑗 = 𝑎 ) ) |
| 36 |
35
|
ralrimivva |
⊢ ( 𝑆 ⊆ ω → ∀ 𝑗 ∈ 𝑆 ∀ 𝑎 ∈ 𝑆 ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) → 𝑗 = 𝑎 ) ) |
| 37 |
36
|
ad2antrr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∀ 𝑗 ∈ 𝑆 ∀ 𝑎 ∈ 𝑆 ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) → 𝑗 = 𝑎 ) ) |
| 38 |
|
ineq1 |
⊢ ( 𝑗 = 𝑎 → ( 𝑗 ∩ 𝑆 ) = ( 𝑎 ∩ 𝑆 ) ) |
| 39 |
38
|
breq1d |
⊢ ( 𝑗 = 𝑎 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) ) |
| 40 |
39
|
reu4 |
⊢ ( ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ ∀ 𝑗 ∈ 𝑆 ∀ 𝑎 ∈ 𝑆 ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) → 𝑗 = 𝑎 ) ) ) |
| 41 |
1 37 40
|
sylanbrc |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) |