Step |
Hyp |
Ref |
Expression |
1 |
|
dfpss2 |
⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ) |
2 |
|
php3 |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊊ 𝐵 ) → 𝐴 ≺ 𝐵 ) |
3 |
|
sdomnen |
⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊊ 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) |
5 |
4
|
ex |
⊢ ( 𝐵 ∈ Fin → ( 𝐴 ⊊ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
6 |
1 5
|
syl5bir |
⊢ ( 𝐵 ∈ Fin → ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
8 |
7
|
expd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ⊆ 𝐵 → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) ) |
9 |
|
dfpss2 |
⊢ ( 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) |
10 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
11 |
10
|
notbii |
⊢ ( ¬ 𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵 ) |
12 |
11
|
anbi2i |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) |
13 |
9 12
|
bitri |
⊢ ( 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) |
14 |
|
php3 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
15 |
|
sdomnen |
⊢ ( 𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴 ) |
16 |
|
ensym |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) |
17 |
15 16
|
nsyl |
⊢ ( 𝐵 ≺ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) |
18 |
14 17
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → ¬ 𝐴 ≈ 𝐵 ) |
19 |
18
|
ex |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) ) |
20 |
13 19
|
syl5bir |
⊢ ( 𝐴 ∈ Fin → ( ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
22 |
21
|
expd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐵 ⊆ 𝐴 → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) ) |
23 |
8 22
|
jaod |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) ) |
24 |
23
|
3impia |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
25 |
24
|
con4d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 ≈ 𝐵 → 𝐴 = 𝐵 ) ) |
26 |
|
eqeng |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
28 |
25 27
|
impbid |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵 ) ) |