| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfpss2 | ⊢ ( 𝐴  ⊊  𝐵  ↔  ( 𝐴  ⊆  𝐵  ∧  ¬  𝐴  =  𝐵 ) ) | 
						
							| 2 |  | php3 | ⊢ ( ( 𝐵  ∈  Fin  ∧  𝐴  ⊊  𝐵 )  →  𝐴  ≺  𝐵 ) | 
						
							| 3 |  | sdomnen | ⊢ ( 𝐴  ≺  𝐵  →  ¬  𝐴  ≈  𝐵 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐵  ∈  Fin  ∧  𝐴  ⊊  𝐵 )  →  ¬  𝐴  ≈  𝐵 ) | 
						
							| 5 | 4 | ex | ⊢ ( 𝐵  ∈  Fin  →  ( 𝐴  ⊊  𝐵  →  ¬  𝐴  ≈  𝐵 ) ) | 
						
							| 6 | 1 5 | biimtrrid | ⊢ ( 𝐵  ∈  Fin  →  ( ( 𝐴  ⊆  𝐵  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐴  ≈  𝐵 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ( 𝐴  ⊆  𝐵  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐴  ≈  𝐵 ) ) | 
						
							| 8 | 7 | expd | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( 𝐴  ⊆  𝐵  →  ( ¬  𝐴  =  𝐵  →  ¬  𝐴  ≈  𝐵 ) ) ) | 
						
							| 9 |  | dfpss2 | ⊢ ( 𝐵  ⊊  𝐴  ↔  ( 𝐵  ⊆  𝐴  ∧  ¬  𝐵  =  𝐴 ) ) | 
						
							| 10 |  | eqcom | ⊢ ( 𝐵  =  𝐴  ↔  𝐴  =  𝐵 ) | 
						
							| 11 | 10 | notbii | ⊢ ( ¬  𝐵  =  𝐴  ↔  ¬  𝐴  =  𝐵 ) | 
						
							| 12 | 11 | anbi2i | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  ¬  𝐵  =  𝐴 )  ↔  ( 𝐵  ⊆  𝐴  ∧  ¬  𝐴  =  𝐵 ) ) | 
						
							| 13 | 9 12 | bitri | ⊢ ( 𝐵  ⊊  𝐴  ↔  ( 𝐵  ⊆  𝐴  ∧  ¬  𝐴  =  𝐵 ) ) | 
						
							| 14 |  | php3 | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊊  𝐴 )  →  𝐵  ≺  𝐴 ) | 
						
							| 15 |  | sdomnen | ⊢ ( 𝐵  ≺  𝐴  →  ¬  𝐵  ≈  𝐴 ) | 
						
							| 16 |  | ensym | ⊢ ( 𝐴  ≈  𝐵  →  𝐵  ≈  𝐴 ) | 
						
							| 17 | 15 16 | nsyl | ⊢ ( 𝐵  ≺  𝐴  →  ¬  𝐴  ≈  𝐵 ) | 
						
							| 18 | 14 17 | syl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊊  𝐴 )  →  ¬  𝐴  ≈  𝐵 ) | 
						
							| 19 | 18 | ex | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐵  ⊊  𝐴  →  ¬  𝐴  ≈  𝐵 ) ) | 
						
							| 20 | 13 19 | biimtrrid | ⊢ ( 𝐴  ∈  Fin  →  ( ( 𝐵  ⊆  𝐴  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐴  ≈  𝐵 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ( 𝐵  ⊆  𝐴  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐴  ≈  𝐵 ) ) | 
						
							| 22 | 21 | expd | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( 𝐵  ⊆  𝐴  →  ( ¬  𝐴  =  𝐵  →  ¬  𝐴  ≈  𝐵 ) ) ) | 
						
							| 23 | 8 22 | jaod | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 )  →  ( ¬  𝐴  =  𝐵  →  ¬  𝐴  ≈  𝐵 ) ) ) | 
						
							| 24 | 23 | 3impia | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin  ∧  ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 ) )  →  ( ¬  𝐴  =  𝐵  →  ¬  𝐴  ≈  𝐵 ) ) | 
						
							| 25 | 24 | con4d | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin  ∧  ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 ) )  →  ( 𝐴  ≈  𝐵  →  𝐴  =  𝐵 ) ) | 
						
							| 26 |  | eqeng | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  =  𝐵  →  𝐴  ≈  𝐵 ) ) | 
						
							| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin  ∧  ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 ) )  →  ( 𝐴  =  𝐵  →  𝐴  ≈  𝐵 ) ) | 
						
							| 28 | 25 27 | impbid | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin  ∧  ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 ) )  →  ( 𝐴  ≈  𝐵  ↔  𝐴  =  𝐵 ) ) |